Galectin-3 as a modulator of cytokine-mediated lymphocyte cooperation in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim of the study. To investigate the effect of recombinant galectin-3 on the cytokines secretion of various subpopulations of helper-lymphocytes (Th1, Th2, Th17, Treg) in culture in vitro. Material and methods. The material for the study was peripheral blood from healthy people (n=17), from which lymphocytes were isolated by gradient centrifugation. Lymphocytes were cultured for 72 hours in a CO2-incubator with recombinant galectin-3 and activating antibodies (antiCD3/antiCD28). The concentration of cytokines (IL-10, IL-13, IL-17A, IL-22, IFNγ, TNFα, TGFβ1) in the supernatants of lymphocyte cultures was determined by enzyme immunoassay. Results. Recombinant galectin-3 in vitro enhanced the secretion of IL-17A, IL-22 by lymphocytes, acting at a dose of 0.5 μg/ml; IL-13, TNFα and IFNγ at doses of 0.5 μg/ml and 1 μ/ml (more pronounced when acting at a dose of 0.5 μg/ml) and inhibited the production of IL-17, IL-22 at a dose of 1 μg/ml and IL-10, TGFβ1 when testing both concentrations. Conclusion: Galectin-3 has a dose-dependent modulating effect on the cytokine-producing function of healthy donors lymphocytes in vitro. Functional imbalance in blood lymphocytes under the action of recombinant galectin-3 is manifested by induction of pro-inflammatory (IFNγ, IL-17, IL-22, TNFα) and anti-inflammatory (interleukin-13) cytokines secretion, against the background of oppression of the suppressor cytokines (IL-10 and TGFβ1) production. A detailed study of the immunotropic effects of galectin-3 in relation to individual lymphocytes subpopulations is relevant from the view point of development new approaches to the treatment of tumor and autoimmune diseases accompanied by excessive production of this lectin.

Full Text

Restricted Access

About the authors

Olga A. Vasil’eva

Siberian State Medical University, SSMU

Author for correspondence.
Email: vasiljeva-24@yandex.ru

candidate of medical sciences, associate professor of the department of pathophysiology, associate professor of the department of biochemistry and molecular biology with a course of clinical laboratory diagnostics

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

T. S. Prokhorenko

Tomsk Regional Blood Center

Email: cytokines@yandex.ru

candidate of medical sciences, doctor of clinical laboratory diagnostics

Russian Federation, Tomsk

Y. V. Kolobovnikova

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

doctor of medical sciences, associate professor, professor of the department of pathophysiology, acting head of the department of normal physiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

V. S. Poletika

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

candidate of medical sciences, associate professor of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

O. I. Urazova

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

doctor of medical sciences, professor, corresponding member of the Russian academy of sciences, head of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

T. E. Kononova

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

candidate of medical sciences, associate professor of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

E. G. Churina

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

doctor of medical sciences, professor of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

G. V. Reynhardt

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

postgraduate student of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

A. V. Kurnosenko

Siberian State Medical University, SSMU

Email: cytokines@yandex.ru

postgraduate student of the department of pathophysiology

Russian Federation, 634050, Tomsk, Moskovsky tract, 2

References

  1. Полетика В.С., Колобовникова Ю.В., Уразова О.И., Васильева О.А., Дмитриева А.И., Янкович К.И., Новицкий В.В., Рябова Л.М., Грищенко М.Ю. Роль галектина-1, -3 в механизмах дисрегуляции Т-клеточного звена иммунного ответа при раке толстого кишечника // Бюллетень сибирской медицины. – 2020. – Т.19, № 3. – С. 76–82.
  2. Симбирцев А.С. Цитокины: классификация и биологические функции // Цитокины и воспаление. – 2004. – № 2. – С. 16-21.
  3. Ярилин А.А. Транскрипционные регуляторы дифференцировки Т-хелперов // Иммунология. – 2010. – № 3. – С. 153-168.
  4. Chen K. Kolls J.K. Interleukin-17A (IL17A). Gene, 2017, Vol. 30, pp. 8-14.
  5. Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature, 2006, Vol. 441, pp. 235–238.
  6. Compagno D., Tiraboschi C., Garcia J.D., Rondón Y., Corapi E., Velazquez C. Laderach D.J. Galectins as Checkpoints of the Immune System in Cancers, Their Clinical Relevance, and Implication in Clinical Trials. Biomolecules, 2020, Vol. 10, no 5, pp. 750-774.
  7. Di Giovangiulio M., Rizzo A., Franzè E., Caprioli F., Facciotti F., Onali S., Favale A., Stolfi C., Fehling H. J., Monteleone G., Fantini M. C. Tbet Expression in Regulatory T Cells Is Required to Initiate Th1-Mediated Colitis. Frontiers in immunology, 2019, Vol.10, pp. 2158-2173.
  8. Fermino M.L., Dias F.C., Lopes C.D., Souza M.A., Cruz Â.K., Liu Fu-T., Chammas R., Roque-Barreira M.C., Rabinovich G. A., Bernardes E.S. Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection. Eur. J. Immunol., 2013, Vol. 43, pp. 1806–1817.
  9. Radosavljevic G., Volarevic V., Jovanovic I., Milovanovic M., Pejnovic N., Arsenijevic N., Hsu D.K., Lukic M.L. The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res., 2012, Vol. 52, no 1-2, pp. 100-110.
  10. Saegusa J., Daniel K., Chen H. Y., Yu Lan, Fermin Agnes, Fung Maxwell A, Liu Fu-Tong. Galectin-3 Is Critical for the Development of the Allergic Inflammatory Response in a Mouse Model of Atopic Dermatitis. The American Journal of Pathology, 2009, Vol. 174, no 3, pp. 922–931.
  11. Sciacchitano S., Lavra L., Morgante A. Ulivieri A., Magi F., Francesco G.P., Bellotti C., Salehi L.B., Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int. J. Mol. Sci., 2018, Vol. 19, no 2, pp. 379-438.
  12. Tana F.L., Guimarães E.S., Cerqueira D.M., Campos P.C., Gomes M.T.R., Marinho F.V., Oliveira S.C. Galectin-3 regulates proinflammatory cytokine function and favours Brucella abortus chronic replication in macrophages and mice. Cell Microbiol., 2021, Vol.23, no.10, pp.1-24.
  13. Trinchieri G. Interleukin-10 production by effector T cells: Th1 cells show self-control. J. Exp. Med., 2007, Vol. 204, no. 2, pp. 239–243.
  14. Vasil’eva O.A., Yakushina V.D., Ryazantseva N.V., Novitsky V.V., Tashireva L.A., Starikova E.G., Zima A.P., Prokhorenko T.S., Krasnova T.U., Nebesnaya I.S. Regulation of Gene Expression of CD4+ T Lymphocyte Differentiation Transcription Factors by Galectin-3 in vitro. Molecular Biology, 2013, Vol. 47, no 6, pp. 879–884.
  15. Zenewicz, L.A., Flavel, R.A. Recent advances in IL-22 biology. International Immunology, 2011, Vol. 23, no. 3, pp. 159–163.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Vasil’eva O.A., Prokhorenko T.S., Kolobovnikova Y.V., Poletika V.S., Urazova O.I., Kononova T.E., Churina E.G., Reynhardt G.V., Kurnosenko A.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies