Epstein–Barr virus and immunity
- Authors: Zotova A.V.1, Svitich O.A.1,2
-
Affiliations:
- Mechnikov Research Institute of Vaccines and Sera
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 21, No 1 (2024)
- Pages: 36-45
- Section: Reviews
- URL: https://cijournal.ru/1684-7849/article/view/636836
- DOI: https://doi.org/10.17816/CI636836
- ID: 636836
Cite item
Abstract
Epstein–Barr virus is the most widespread herpes virus in humans; the majority of the global population is infected by it. In children, the viral infection either lacks symptoms or leads to infectious mononucleosis. In a small percentage of people with latent infection, especially immunosuppressed patients, Epstein–Barr virus causes lymphoid and epithelial malignant neoplasms and a number of autoimmune diseases. Among other things, it is one of the causes of multiple sclerosis. Innate immunity is the primary protection from viruses, which the virus evades by using a number of strategies for successfully infecting people. It disrupts the innate immunity’s signaling pathways activated by Toll-, NOD-, RIG-I- and AIM2-like receptors, as well as cyclic GMP-AMP synthase. Epstein–Barr virus also counters the production and signaling of interferon, including JAK-STAT and TBK1-IRF3 pathways. Because of the differential modulation of the proviral and antiviral mechanisms of caspases and other cell cycle regulators at different infection stages, the virus actively interferes with the apoptosis and inflammation pathways to proceed infecting effectively. Using the activation of innate immunity to its advantage by triggering the pro-inflammatory response and the proteolytic cleavage of caspases which demonstrate proviral activity, the virus establishes latency and enters the phase of lytic reactivation. This promotes the development of serious life-threatening conditions, including cancer. The outcome of the infection is regulated by the delicate interaction between innate and adaptive immunity and the virus’ reproduction. In the absence of approved prophylactic vaccines, immunocorrection and antiviral therapy are the only possible methods of combating the virus and preventing the conditions associated with it. Understanding the mechanisms of various genes of Epstein–Barr virus involved in its life activity at different infection stages will help to find the right approach to developing preventive and curative treatments for this virus in the future.
Full Text

About the authors
Anna V. Zotova
Mechnikov Research Institute of Vaccines and Sera
Email: zotovafoto@yandex.ru
ORCID iD: 0009-0005-5845-7569
Cand. Sci. (Pharmacy)
Russian Federation, MoscowOksana A. Svitich
Mechnikov Research Institute of Vaccines and Sera; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Moscow; MoscowReferences
- Kaira AN, Solomai TV, Semenenko TA. Epidemiology and prevention of Epstein–Barr virus infection: Textbook. Moscow: RMANPO; 2022. 81 p. (In Russ.) EDN: YZNWEG
- Middeldorp JM. Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease. Curr Top Microbiol Immunol. 2015;391:289–323. doi: 10.1007/978-3-319-22834-1_10
- Hoover K, Higginbotham K. Epstein-Barr Virus [Updated 2023 August 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024– . Available from: https://www.ncbi.nlm.nih.gov/books/NBK559285/
- Vietzen H, Furlano PL, Cornelissen JJ, et al. HLA-E-restricted immune responses are crucial for the control of EBV infections and the prevention of PTLD. Blood. 2023;141(13):1560–1573. doi: 10.1182/blood.2022017650
- Solomay TV, Semenenko TA, Kuzin SN, Akimkin VG. Territorial features of the epidemic process of infection caused by the Epstein–Barr virus. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2021;10(4):81–89. doi: 10.33029/2305-3496-2021-10-4-81-89
- Kimura H, Cohen JI. Chronic active Epstein-Barr virus disease. Front Immunol. 2017;8:1867. doi: 10.3389/fimmu.2017.01867
- Cao Y, Xie L, Shi F, et al. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther. 2021;6(1):15. doi: 10.1038/s41392-020-00376-4
- Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol Immunol. 2015;390(Pt 1):365–385. doi: 10.1007/978-3-319-22822-8_15
- Lupo J, Truffot A, Andreani J, et al. Virological markers in Epstein-Barr virus-associated diseases. Viruses. 2023;15(3):656. doi: 10.3390/v15030656
- Johansson L, Pratesi F, Brink M, et al. Antibodies directed against endogenous and exogenous citrullinated antigens pre-date the onset of rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):127. doi: 10.1186/s13075-016-1031-0
- Phan TG. Epstein-Barr virus and multiple sclerosis: the dawn of a new age. Clin Transl Immunology. 2023;12(6):e1457. doi: 10.1002/cti2.1457
- Wolfe LC. Chapter 2 — hematologic manifestations of systemic illness. In: Lanzkowsky’s manual of pediatric hematology and oncology. S.l.: Academic Press; 2016. P. 7–31. doi: 10.1016/B978-0-12-801368-7.00002-8
- Gómez-Archila JD, Arellano-Galindo J, Palacios-Reyes C, et al. Epstein Barr virus as a promoter of tumorigenesis in the tumor microenvironment of breast cancer (Review). Int J Mol Med. 2023;52(2):72. doi: 10.3892/ijmm.2023.5275
- Khlanta DA, Khlanta NA, Fedoskova TG, et al. Epstein–Barr virus and its role in malignancies: state-of-the-art. Russian Medical Inquiry. 2020;4(3):148–154. doi: 10.32364/2587-6821-2020-4-3-148-154
- Ignatova EO, Seryak DA, Fedyanin MYu, et al. Molecular portrait of stomach cancer associated with the Epstein–Barr virus. Advances in Molecular Oncology. 2020;7(3):27–36. doi: 10.17650/2313-805X-2020-7-3-27-36
- Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol. 2022;13:1059133. doi: 10.3389/fimmu.2022.1059133
- Wong Y, Meehan MT, Burrows SR, et al. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31–46. doi: 10.1007/s00432-021-03824-y
- Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol. 2021;12:734471. doi: 10.3389/fimmu.2021.734471
- Solomay TV, Semenenko TA, Filatov NN, et al. Epstein–Barr virus: vaccine development. Immunologiya. 2020;41(4):381–390. doi: 10.33029/0206-4952-2020-41-3-381-390
- Solomay TV, Semenenko TA, Ilina NI. Substantiation of the strategy of nonspecific immunoprophylaxis of active EBV infection. Immunologiya. 2021;42(6):686–696. doi: 10.33029/0206-4952-2021-42-6-686-696
- Hutt-Fletcher LM. Epstein-Barr virus entry. J Virol. 2007;81(15):7825–7832. doi: 10.1128/JVI.00445-07
- Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51–64. doi: 10.1038/s41579-022-00770-5
- Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185(20):3652–3670. doi: 10.1016/j.cell.2022.08.026
- Huang W, Bai L, Tang H. Epstein-Barr virus infection: the micro and macro worlds. Virol J. 2023;20(1):220. doi: 10.1186/s12985-023-02187-9
- Cao Y, Xie L, Shi F, et al. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther. 2021;6(1):15. doi: 10.1038/s41392-020-00376-4
- Jangra S, Yuen KS, Botelho MG, Jin DY. Epstein-Barr virus and innate immunity: friends or foes? Microorganisms. 2019;7(6):183. doi: 10.3390/microorganisms7060183
- Phan TG. Epstein-Barr virus and multiple sclerosis: the dawn of a new age. Clin Transl Immunology. 2023;12(6):e1457. doi: 10.1002/cti2.1457
- Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol. 2014;26:60–68. doi: 10.1016/j.semcancer.2014.01.002
- Silva JM, Alves CEC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol. 2024;15:1297994. doi: 10.3389/fimmu.2024.1297994
- Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol. 2019;10:1586. doi: 10.3389/fimmu.2019.01586
- Hatton OL, Harris-Arnold A, Schaffert S, et al. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunol Res. 2014;58(2-3):268–276. doi: 10.1007/s12026-014-8496-1
- Martorelli D, Muraro E, Merlo A, et al. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol. 2012;2012:931952. doi: 10.1155/2012/931952
- Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–1190. doi: 10.1189/jlb.0313173
- Barycheva LU, Golubeva MV, Volkova AV. FACTORS and mechanisms of immunosupression in Epstein-Barr virus infection. Children Infections. 2014;13(2):28–33. doi: 10.22627/2072-8107-2014-13-2-28-33
- Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1(1):75–82. doi: 10.1038/35095584
- Ressing ME, van Gent M, Gram AM, et al. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol. 2015;391:355–381. doi: 10.1007/978-3-319-22834-1_12
- Yao Y., Kong W., Yang L., et al. Immunity and immune evasion mechanisms of Epstein-Barr virus. Viral Immunol. 2023;36(5):303–317. doi: 10.1089/vim.2022.0200
- Li W, He C, Wu J, et al. Epstein barr virus encodes miRNAs to assist host immune escape. J Cancer. 2020;11(8):2091–2100. doi: 10.7150/jca.42498
- Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–1190. doi: 10.1189/jlb.0313173
- Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. Infect Genet Evol. 2023;112:105443. doi: 10.1016/j.meegid.2023.105443
Supplementary files
