The role of the inflammasome in the development of aseptic inflammation in miscarriage



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Innate immunity plays a key role in the processes of onset and maintenance of physiological pregnancy. Changes in the function of the immune system can lead to disruptions in the normal course of pregnancy and miscarriage. In recent years, the function of NOD-like receptors (NLR) of innate immunity in pregnancy pathologies has been actively studied. NLRs are intracellular receptors that recognize a wide range of ligands and participate in various mechanisms, including the assembly of the inflammasome. The inflammasome is a cytoplasmic high-molecular-weight protein complex that initiates inflammation in response to infection or endogenous signals of cellular stress and tissue damage. The expression of genes, as well as the protein products of NLRP3 inflammasome activation, are found at different levels of the female reproductive tract, including placenta and fetal membranes. Increasing evidence supports a role for NLRP3 inflammasome in the development of reproductive abnormalities, including infertility and miscarriage. Inflammasome activity is conditioned by a large number of endogenous factors, disruption of any of which can lead to the development of aseptic inflammation. The outcome of such inflammation is often spontaneous miscarriage and preterm labor. NLRP3 inflammasome activation can be caused by disorders in which the concentration of molecules stimulating the NLRP3 receptor is increased at the systemic or local level. The study of the established non-infectious factors of NLRP3 overactivation and introduction of their diagnostics into clinical practice will allow timely detection and reduction risks associated with pregnancy loss.

Full Text

Picture 1

(a) Structure of the NLR receptor: The NLR contains 3 domains with different functions. C-terminal domain rich in leucine-rich repeats (LRR) is involved in ligand recognition; NACHT domain - binding and oligomerization domain is located in the central part of the molecule; N-terminal domain is involved in protein-protein interactions and differs from one NLR to another. (c) Depending on the structure of the N-terminal domain, 4 NLR subfamilies are distinguished: NLRP (containing the pyrin domain PYD), NLRC (containing the caspase activation and recruitment domain CARD), NLRA (containing the acidic transactivating domain, AD), NLRB (containing baculovirus repeats of apoptosis inhibitors, BIR). (b) NLR family proteins are involved in functionally distinct processes: intracellular signal transduction, transcription activation, autophagy, and inflammasome assembly. (b, c) NLRs such as NLRP1, NLRP2, NLRP3, NLRC4 are involved in inflammasome assembly.

Picture 2

1) Inflammasome activation is preceded by a priming step, which requires TLR stimulation followed by NF-κB activation. NF-κB increases gene expression of key inflammatory proteins: NLR3, ASC, Pro-CASP-1, pro-IL-1β.

2) NLRP3 is located intracellularly and participates in ligand recognition; its stimulation leads to the assembly of the inflammasome with the attachment of the adapter protein ASC and procaspase-1 (Pro-CASP1) to NLRP3. Subsequently, Pro-CASP1 is activated to form CASP1, which is involved in the formation of active forms of proinflammatory cytokines (IL-1β) and gazdermin-D (GSDMD). In turn, GSDMD promotes the formation of pores in the plasma membrane, which leads to cell pyroptosis and release of proinflammatory cytokines into the extracellular medium.

3) Inflammasome activation is provided by a wide range of stimuli (circled in red in the figure): mitochondrial dysfunction with the release of ROS (reactive oxygen species), DNA; changes in the ionic composition of the cytoplasm (outflow of K+, release of Ca2+ from the endoplasmic reticulum); damage to lysosomes with the release of cathepsin after their uptake of crystalline molecules; PAMP, DAMP.

Picture 3

1) Pathologic activation of NLRP3 inflammasome in endometrial tissues impairs endometrial receptivity and fetal egg attachment, which clinically may manifest as infertility or early miscarriage.

2) NLRP3-induced inflammation at the mother-fetus interface promotes increased prostaglandin (PG) levels and oxytocin receptor stimulation, which promotes myometrial contractile activity and cervical opening. The activation of these mechanisms results in the rejection of the fetal egg and pregnancy loss (spontaneous miscarriage or premature labor).

3) Non-infectious factors contributing to excessive activation of NLRP3 inflammasome may be diabetes mellitus, obesity, hyperuricemia, genetic disorders, antiphospholipid syndrome.

×

About the authors

Polina I. Kukina

I.I. Mechnikov FGBNU NIIVS. Moscow, Russia

Author for correspondence.
Email: renoru47@gmail.com
ORCID iD: 0000-0002-0054-6754
SPIN-code: 7021-6761
Russian Federation

Yulia E. Dobrokhotova

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: pr.dobrohotova@mail.ru
ORCID iD: 0000-0002-7830-2290

Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology, Faculty of Medicine

Russian Federation, Moscow

Eleonora A. Markova

Pirogov Russian National Research Medical University

Email: markova.eleonora@mail.ru
ORCID iD: 0000-0002-9491-9303

Cand. Sci. (Med.)

Russian Federation, Moscow

Ksenia A. Makhortova

Email: makhortovakseniy20@mail.ru
ORCID iD: 0009-0007-1459-3854

Oksana A. Svitich

Mechnikov Research Institute of Vaccines and Sera; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Moscow; Moscow

References

  1. Medawar P.D. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symposia of the society for experimental biology; 1953. P. 320–38.
  2. Wegmann T.G. The cytokine basis for cross-talk between the maternal immune and reproductive systems. Current Opinion in Immunology, 1989; 2(5): 765–9. doi: 10.1016/0952-7915(90)90048-l
  3. Mor G., Cardenas I., Abrahams V., Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Annals of the New York Academy of Sciences, 2011; 1221: 80–7. doi: 10.1111/j.1749-6632.2010.05938.x
  4. Chaouat G. Innately moving away from the Th1/Th2 paradigm in pregnancy. Clinical and Experimental Immunology, 2003; 131(3): 393–5. doi: 10.1046/j.1365-2249.2003.02100.x
  5. D.L. Schminkey, M. Groer. Imitating a stress response: A new hypothesis about the innate immune system’s role in pregnancy. Medical Hypotheses, 2014, 82. P. 721–729. doi: 10.1016/j.mehy.2014.03.013
  6. Montazeri F., Tajamolian M., Hosseini E.S., Hoseini S.M. Immunologic Factors and Genomic Considerations in Recurrent Pregnancy Loss: A Review. International Journal of Medical Laboratory, 2023; 10(4): 279-305. doi: 10.18502/ijml.v10i4.15010
  7. Quenby S., Gallos I.D., Dhillon-Smith R.K., et.al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. The Lancet, 2021; 397(10285): 1658–67. doi: 10.1016/S0140-6736(21)00682-6
  8. Gupta S. ACOG’s Guide to Managing Miscarriage: Follow Patient Preference. Updated clinical management of early pregnancy loss focuses on patient choice. MedPage Today, 04.22.2015.
  9. Radzinskij V.E., Dimitrova V.I., Majskova I.YU. Non-developing pregnancy. Moscow.: GEOTAR-Media, 2009, 200 p. ISBN 978-5-9704-0991-6 (In Russ.)
  10. Ohuma E., Moller A.-B., Bradley E., et al. National, regional, and worldwide estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. The Lancet, 2023; 402(10409): 1261-1271. doi: 10.1016/S0140-6736(23)00878-4
  11. Glass H.C., Costarino A.T., Stayer S.A., et.al. Outcomes for Extremely Premature Infants. Anesthesia & Analgesia, 2015; 120(6): 1337-1351. doi: 10.1213/ANE.0000000000000705
  12. Management of early pregnancy miscarriage. Clinical practice guideline. Institute of Obstetricians and Gynaecologists, Royal College of Physicians of Ireland and Directorate of Strategy and Clinical Programmes, Health Service Executive, April 2012. Guideline 2014; 22 p.
  13. Savel'eva G.M., Suhih G.T., Serova V.N., Radzinskij V.E. Obstetrics: National Guide. 2nd ed., revised and enlarged. Moscow: GEOTAR-Media, 2022. 1080 p. (In Russ.)
  14. Sargent I.L., Borzychowski A.M., Redman C.W.G. NK cells and human pregnancy – an inflammatory view. Trends in Immunology, 2006; 27(9): 399–404. doi: 10.1016/j.it.2006.06.009
  15. Christiaens I., Zaragoza D.B., Guilbert L., et.al. Inflammatory processes in preterm and term parturition. Journal of Reproductive Immunology, 2008; 79(1): 50–7. doi: 10.1016/j.jri.2008.04.002
  16. Young A., Thomson A.J., Ledingham M., et.al. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biology of Reproduction, 2002; 66(2): 445–9. doi: 10.1095/biolreprod66.2.445
  17. Li W.X., Xu X.H., Jin L.P. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. Journal of Cellular and Molecular Medicine, 2021; 25(22): 10362-10375. doi: 10.1111/jcmm.17022
  18. Koga K., Izumi G., Mor G., Fujii T., Osuga Y. Toll-like Receptors at the Maternal-Fetal Interface in Normal Pregnancy and Pregnancy Complications. American Journal of Reproductive Immunology, 2014; 72(2): 192–205. doi: 10.1111/aji.12258
  19. Weng J., Couture C., Girard S. Innate and adaptive immune systems in physiological and pathological pregnancy. Biology, 2023; 12: 402. doi: 10.3390/biology12030402
  20. Olmos-Ortiz A., Flores-Espinosa P., Mancilla-Herrera I., et.al. Innate immune cells and toll-like receptor–dependent responses at the maternal–fetal interface. International Journal of Molecular Sciences, 2019; 20(15): 3654. doi: 10.3390/ijms20153654
  21. Bakhareva I.V., Makarov O.V., Kuznetsov P.A., Savchenko T.N., Romanovskaia V.V. Pathogenetic relationship between bacterial vaginosis and local immune changes. Russian Bulletin of Obstetrician-Gynecologist. 2012;12(3):21‑23. (In Russ.)
  22. Makarov O.V., Bakhareva I.V., Gankovskaya L.V., Romanovskaya V.V., Gankovskaya O.A. Toll-like receptors in the genesis of miscarriage. Akusherstvo i ginekologiya, 2008; № 2: 22-27. (In Russ.)
  23. Babaei K., Azimi Nezhad M., Sedigh Ziabari S.N., et al. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon, 2023; 10(15): e35345. doi: 10.1016/j.heliyon.2024.e35345
  24. Gankovskaya O.A., Bakhareva I.V., Gankovskaya L.V., Somova O.Yu., Zverev V.V. Study of expression of TLR9, NF-kappaB, TNFalpha genes in cells of cervical canal mucosa in pregnant women with herpesvirus infection]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2009, no. 2, pp. 61-64. (In Russ.)
  25. Motta V., Soares F., Sun T., Philpott D.J. NOD-Like Receptors: Versatile Cytosolic Sentinels. Physiological Reviews, 2015; 95: 149–178. doi: 10.1152/physrev.00009.2014
  26. Liao Z., Su J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. Developmental & Comparative Immunology, 2021; 122: 104131. doi: 10.1016/j.dci.2021.104131
  27. Kufer T.A., Sansonetti P.J. NLR functions beyond pathogen recognition. Nature Immunology, 2011; 12(2): 121–128. doi: 10.1038/ni.1985
  28. De Nardo D., Balka K.R., Gloria Y.C., Rao V.R., Latz E., Masters S.L. Interleukin-1 receptor–associated kinase 4 (IRAK4) plays a dual role in myddosome formation and toll-like receptor signaling. Journal of Biological Chemistry, 2018; 293: 15195-15207. doi: 10.1074/jbc.RA118.003314
  29. de Rivero Vaccari J.P. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Frontiers in Endocrinology, 2020; 11: 8. doi: 10.3389/fendo.2020.00008
  30. Omeljaniuk W.J., Garley M., Pryczynicz A., et.al. NLRP3 Inflammasome in the Pathogenesis of Miscarriages. International Journal of Molecular Sciences, 2024; 25: 10513. doi: 10.3390/ijms251910513
  31. Duez H., Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Frontiers in Endocrinolpgy, 2021; 12:630536. doi: 10.3389/fendo.2021.630536
  32. Shi H., Wang Y., Li X., et.al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Journal Nature Immunology, 2016; 17(3): 250-258. doi: 10.1038/ni.3333
  33. Bauernfeind F.G., Horvath G., Stutz A., et.al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology, 2009; 183(2): 787–791. doi: 10.4049/jimmunol.0901363
  34. Py B.F., Kim M-S., Vakifahmetoglu-Norberg H., Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Journal Molecular Cell, 2013; 49: 331-338. doi: 10.1016/j.molcel.2012.11.009
  35. Vajjhala P.R., Mirams R.E., Hill J.M. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. Journal of Biological Chemistry, 2012; 287: 41732-41743. doi: 10.1074/jbc.M112.381228
  36. Yang J., Liu Z., Xiao T.S. Post-translational regulation of inflammasomes. Journal Cellular and Molecular Immunology, 2017; 14(1): 65-79. doi: 10.1038/cmi.2016.29
  37. Li J., Billiar T.R., Talanian R.V., et.al. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Journal Biochemical and Biophysical Research Communications, 1997; 240(2): 419-424. doi: 10.1006/bbrc.1997.7672
  38. Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International Journal of Molecular Sciences, 2019; 20(13): 3328. doi: 10.3390/ijms20133328
  39. Yang X., Chang H.Y., Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Journal Molecular Cell, 1998; 1: 319-325. doi: 10.1016/s1097-2765(00)80032-5
  40. Lee G.S., Subramanian N., Kim A.I., et.al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca 2+ and cAMP. Journal Nature, 2012; 492(7427): 123-127. doi: 10.1038/nature11588
  41. Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Journal Nature, 2011; 469(7329): 221-225. doi: 10.1038/nature09663
  42. Baker P.J., Boucher D., Bierschenk D., et.al. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. European Journal Immunology, 2015; 45(10): 2918-2926. doi: 10.1002/eji.201545655
  43. Gaidt M.M., Ebert T.S., Chauhan D., et.al. Human monocytes engage an alternative inflammasome pathway. Journal Immunity, 2016; 44(4): 833-846. doi: 10.1016/j.immuni.2016.01.012
  44. Fusco R., Siracusa R., Genovese T., Cuzzocrea S., Di Paola R. Focus on the Role of NLRP3 Inflammasome in Diseases. International Journal of Molecular Sciences, 2020; 21(12): 4223. doi: 10.3390/ijms21124223
  45. Balci C.N., Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: A comprehensive review. Journal of Reproductive Immunology, 2024; 161: 104173. doi: 10.1016/j.jri.2023.104173.
  46. Gomez-Lopez N., Motomura K., Miller D., Garcia-Flores V., Galaz J., Romero R. Inflammasomes: their role in normal and complicated pregnancies. Journal Immunology, 2019; 203(11): 2757–2769. doi: 10.4049/jimmunol.1900901
  47. Paulesu L., Jantra S., Ietta F., Brizzi R., Bigliardi E. Interleukin-1 in reproductive strategies. Journal Evolution and Development, 2008; 10: 778–788. doi: 10.1111/j.1525-142X.2008.00292.x
  48. Saji F., Samejima Y., Kamiura S., Sawai K., Shimoya K., Kimura T. Cytokine production in chorioamnionitis. Journal of Reproductive Immunology, 2000; 47(2): 185-196. doi: 10.1016/s0165-0378(00)00064-4
  49. Terzidou V., Blanks A.M., Kim S.H., et.al. Labor and inflammation increase the expression of oxytocin receptor in human amnion. Journal Biology of Reproduction, 2011; 84: 546-52. doi: 10.1095/biolreprod.110.086785
  50. Chen Y., Miao C., Zhao Y., Yang L., Wang R., Shen D., Ren N., Zhang Q. Inflammasomes in humanreproductivediseases. Journal Molecular Humam Reproduction, 2023; 29(10): gaad035. doi: 10.1093/molehr/gaad035
  51. Zhou F., Li C., Zhang S.Y. NLRP3 inflammasome: a new therapeutic target for high-risk reproductive disorders? Chinese Medical Journal, 2020; 134(1): 20-27. doi: 10.1097/CM9.0000000000001214
  52. Lu M., Ma F., Xiao J., Yang L., Li N., Chen D. NLRP3 inflammasome as the potential target mechanism and therapy in recurrent spontaneous abortions. Journal Molecular Medicine Reports, 2019; 19: 1935–1941. doi: 10.3892/mmr.2019.9829.
  53. Gao P., Zha Y., Gong X., Qiao F., Liu H. The role of maternal–foetal interface inflammation mediated by NLRP3 inflammasome in the pathogenesis of recurrent spontaneous abortion. Journal Placenta, 2020; 101: 221-229. doi: 10.1016/j.placenta.2020.09.067
  54. D’Ippolito S., Tersigni C., Marana R., Di Nicuolo F., Gaglione R., Rossi E.D., Castellani R., Scambia G., Di Simone N. Inflammosome in the human endometrium: Further step in the evaluation of the “maternal side”. Journal Fertility and Sterility, 2016; 105: 111–118.e4. doi: 10.1016/j.fertnstert.2015.09.027
  55. Belousova V.S., Svitich O.A., Timokhina E.V., Strizhakov A.N., Bogomazova I.M. The polymorphism of the cytokine genes IL1b, TNF, Il1RA, and IL4, significantly increases the risk of preterm birth. Biochemistry. 2019; 84(9):1281-1288 (in Russ.)
  56. Lim R., Lappas M. NOD-like receptor pyrin domain-containing-3 (NLRP3) regulates inflammation-induced pro-labor mediators in human myometrial cells. American Journal Reproductive Immunology, 2018; 79: e12825. doi: 10.1111/aji.12825
  57. Gomez-Lopez N., Romero R., Xu Y., Plazyo O., Unkel R., Leng Y., Than N.G., Chaiworapongsa T., Panaitescu B., Dong Z., et.al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reproductive Sciences, 2017; 24: 1382–1401. doi: 10.1177/1933719116687656
  58. Gomez-Lopez N., Romero R., Tarca A.L., Miller D., Panaitescu B., Schwenkel G., Gudicha D.W., Hassan S.S., Pacora P., Jung E., et.al. Inflammasome activation during spontaneous preterm labor with intra-amniotic infection or sterile intra-amniotic inflammation. American Journal Reproductive Immunology, 2019; 80(5): e13049. doi: 10.1111/aji.13049
  59. Motomura K., Romero R., Garcia-Flores V., Leng Y., Xu Y., Galaz J., Slutsky R., Levenson D., Gomez-Lopez N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Journal Molecular Human Reproduction, 2020; 26: 712–726. doi: 10.1093/molehr/gaaa054
  60. Seno K., Sase S., Ozeki A., Takahashi H., Ohkuchi A., Suzuki H., Matsubara S., Iwata H., Kuwayama T., Shirasuna K. Advanced glycation end products regulate interleukin-1β production in human placenta. Journal of Reproduction and Development, 2017; 63: 401–408. doi: 10.1262/jrd.2017-032
  61. Lai Q., Zhang X. Predictive value of early pregnancy uric acid levels for adverse pregnancy outcomes. African Journal Reproductive Health, 2024; 28(12): 52-60. doi: 10.29063/ajrh2024/v28i12.6.
  62. Mulla M.J., Weel I.C., Potter J.A., Gysler S.M., Salmon J.E., Peraçoli M.T.S., Rothlin C.V., Chamley L.W., Abrahams V.M. Antiphospholipid antibodies inhibit trophoblast Toll-like receptor and inflammasome negative regulators. Journal Arthritis and Rheumatology, 2018; 70: 891–902. doi: 10.1002/art.40416
  63. Zhu D., Zou H., Liu J., Wang J., Ma C., Yin J., Peng X., Li D., Yang Y., Ren Y., et.al. Inhibition of HMGB1 ameliorates the maternal-fetal interface destruction in unexplained recurrent spontaneous abortion by suppressing pyroptosis activation. Journal Frontiers in Immunology, 2021; 12: 782792. doi: 10.3389/fimmu.2021.782792
  64. Zhu D., Zou H., Liu J., Wang J., Ma C., Yin J., Peng X., Li D., Yang Y., Ren Y., et.al Inhibition of HMGB1 ameliorates the maternal-fetal interface destruction in unexplained recurrent spontaneous abortion by suppressing pyroptosis activation. Journal Frontiers in Immunology, 2021; 12: 782792. doi: 10.3389/fimmu.2021.782792
  65. Conforti-Andreoni C., Ricciardi-Castagnoli P., Mortellaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Journal Cellular and Molecular Immunology, 2011; 8(2): 135–145. doi: 10.1038/cmi.2010.81
  66. Xu L., Li S., Liu Z., Jiang S., Wang J., Guo M., Zhao X., Song W., Liu S. The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population. The Journal of Maternal-Fetal and Neonatal Medicine, 2019; 32(11): 1792–1799. doi: 10.1080/14767058.2017.1418313
  67. Pontillo A., Reis E.C., Bricher P.N., Vianna P., Diniz S., Fernandes K.S., Chies J., Sandrim V. NLRP1 L155H polymorphism is a risk factor for preeclampsia development. American Journal of Reproductive Immunology, 2015; 73(6): 577-581. doi: 10.1111/aji.12353

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Kukina P.I., Dobrokhotova Y.E., Markova E.A., Makhortova K.A., Svitich O.A.