Characteristics of innate immunity cells after diseases caused by the SARS-COV-2 virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hyperinflammation and dysfunction of the immune response during COVID-19 infection develops due to the reaction of innate immune cells to the introduction of the SARS-CoV-2 virus. The expression of receptors on these cells reflects the degree of their activation and makes it possible to assess the intensity of inflammation. The purpose of this study were to study the structural and functional features of innate immunity cells in patients. The specific gravity and absolute content of neutrophils (CD11b+, CD16+, CD18+) and monocytes (CD14+CD16, CD14CD16+, CD11b+, CD18+) in the peripheral blood of patients were determined. The contingent of the study included 60 people, of which: 47 had had a coronavirus infection COVID-19 (confirmed by PCR) in the 12 weeks preceding the study, and 13 had no history of it. In the peripheral blood of people who had COVID-19, compared with those who had not been ill, a significantly lower number of monocytes of the classical (CD14CD16+) and, on the contrary, a greater number of non-classical (CD14+CD16) cell populations were determined (p<0.05). Also in these individuals, a high proportion of monocytes carrying the adhesion receptors CD11b and CD18 (p<0.01) and a high content of neutrophils expressing the adhesion receptor CD11b+ and CD16+ (p<0.05) was noted. Thus, the results of a study of the expression of various types of receptors on monocytes and neutrophils illustrated the long-term preservation of aberrant structural and functional characteristics of innate immunity cells in individuals who underwent COVID-19.

Full Text

Restricted Access

About the authors

N. G. Plekhova

Pacific State Medical University

Author for correspondence.
Email: pl_nat@hotmail.com
ORCID iD: 0000-0002-8701-7213

д.б.н., заведующая Центральной научно-исследовательской лабораторией 

Russian Federation, Vladivostok

E. V. Prosekova

Pacific State Medical University

Email: pl_nat@hotmail.com
ORCID iD: 0000-0001-6632-9800

д.м.н., профессор, заведующий кафедрой клинической и лабораторной диагностики, общей и клинической иммунологии

Russian Federation, Vladivostok

T. A. Sitdikova

Pacific State Medical University

Email: pl_nat@hotmail.com

к.м.н., ассистент кафедры клинической и лабораторной диагностики, общей и клинической иммунологии 

Russian Federation, Vladivostok

A. A. Dubiy

Pacific State Medical University

Email: pl_nat@hotmail.com

ординатор кафедры клинической и лабораторной диагностики, общей и клинической иммунологии 

Russian Federation, Vladivostok

A. O. Mikhailov

Pacific State Medical University

Email: pl_nat@hotmail.com

к.м.н., доцент кафедры инфекционных болезней 

Russian Federation, Vladivostok

References

  1. Губенко Н.С., Будко А.А., Плисюк А.Г., Орлова Я.А. Связь показателей общего анализа крови с тяжестью течения COVID-19 у госпитализированных пациентов // Южно-Российский журнал терапевтической практики. 2021. Т. 2(1). С. 90-101. Gubenko N.S., Budko A.A., Plisyuk A.G., Orlova Ya.A. Relationship of indicators of a complete blood count with the severity of COVID-19 in hospitalized patients // South Russian J. Therapeutic Practice. 2021. Vol. 2(1). pp. 90-101.
  2. Платонова Т.А., Голубкова А.А., Скляр М.С., Смирнова С.С., Карбовничая Е.А., Никитская А.Д. Заболеваемость COVID-19 медицинских работников: факторы риска заражения и развития тяжелых клинических форм // Тихоокеанский медицинский журнал. 2022. Т. 2. С. 26-33. Platonova T.A., Golubkova A.A., Sklyar M.S., Smirnova S.S., Karbovnichaya E.A., Nikitskaya A.D. The morbidity rate of COVID-19 among medical workers: risk factors of getting infected and the development of severe clinical forms // Pacific Medical Journal. 2022. Vol. 2. Р. 26-33.
  3. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., … Terrier B. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients // Science (New York, N.Y.), 2020. Vol. 369(6504), Р. 718–724.
  4. Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19 // Nature reviews. Microbiology. 2021. Vol. 19(3). Р. 141–154.
  5. Huang C. (Del Valle), Wang Y., Li X., Ren L., Zhao J., … Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet (London, Eng.). 2020. Vol. 395(10223). Р. 497–506.
  6. Hosseini A., Hashemi V., Shomali N., Asghari F., Gharibi T., Akbari M., Gholizadeh S., Jafari A. Innate and adaptive immune responses against coronavirus // Biomedicine & pharmacotherapy. 2020. Vol. 132. Р. 110859.
  7. Johnson A.S., Fatemi R., Winlow W. SARS-CoV-2 bound human serum albumin and systemic septic shock // Front. Cardiovasc. Med. 2020. Vol. 7. Р. 153-157.
  8. Lu J., Chu J., Zou Z., Hamacher N.B., Rixon M.W., Sun P.D. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding // Proceed. National Acad. Sciences USA. 2015. Vol. 112(3). Р. 833–838.
  9. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., … Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19 // Nature. 2020. Vol. 584(7821). Р. 463–469.
  10. Mortaz E., Tabarsi P., Varahram M., Folkerts G., Adcock I.M. The immune response and immunopathology of COVID-19 // Frontiers in immunology. 2020. Vol. 11. Р. 2037.
  11. Rendeiro A.F., Casano J., Vorkas C.K., Singh H., Morales A., … Inghirami G. Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression // Life science alliance. 2020. Vol. 4(2). e202000955.
  12. Rosen H.R., O’Connell C., Nadim M.K., DeClerck B., Sheibani S., DePasquale E., Sanossian N., Blodget E., Angell T. Extrapulmonary manifestations of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection // J. med. Virology. 2021. Vol. 93(5). Р. 2645–2653.
  13. Ryan F.J., Hope C.M., Masavuli M.G., Lynn M.A., Mekonnen Z.A., … Lynn D.J. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection // BMC medicine. 2022. Vol. 20(1). Р. 26-29.
  14. Paludan S.R., Mogensen T.H. Innate immunological pathways in COVID-19 pathogenesis. Sci. Immunol. 2022. vol. 7(67): eabm5505.
  15. Peyneau M., Granger V., Wicky P.H., Khelifi-Touhami D., Timsit J.F., … de Chaisemartin L. Innate immune deficiencies are associated with severity and poor prognosis in patients with COVID-19. Scientific reports. 2022. Vol. 12(1). Р. 638.
  16. Phetsouphanh C., Darley D.R., Wilson D.B., Howe A., Munier C.M.L., Patel S.K., Juno J.A., Burrell L.M., Kent S.J., Dore G.J., Kelleher A.D., Matthews G.V. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat. Immunol. 2022. Vol. 23(2). Р. 210-216.
  17. Schultze J.L., Aschenbrenner A.C. COVID-19 and the human innate immune system // Cell. 2021. Vol. 184(7). Р. 1671–1692.
  18. Sun J., Zheng Q., Madhira V., Olex A.L., Anzalone A.J., Vinson A., Singh J.A., … Patel R.C. Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US. // JAMA internal medicine. 2022. Vol. 182(2). Р. 153–162.
  19. Tamura S., Kurata T. Defense mechanisms against influenza virus infection in the respiratory tract mucosa // Jpn. J. Infect. Dis. 2004. Vol. 57. Р. 236-247.
  20. Thorne L.G., Bouhaddou M., Reuschl A.K., Zuliani-Alvarez L., Polacco B., … Krogan N.J. Evolution of enhanced innate immune evasion by SARS-CoV-2. // Nature. 2022. Vol. 602(7897). Р. 487–495.
  21. Trombetta A.C., Farias G.B., Gomes A.M.C., Godinho-Santos A., Rosmaninho P., … Fernandes S.M. Severe COVID-19 recovery is associated with timely acquisition of a myeloid cell immune-regulatory phenotype // Frontiers in immunology. 2021. Vol. 12. Р. 691725.
  22. Yeap W.H., Wong K.L., Shimasaki N., Teo E.C., Quek J.K., Yong H.X., Diong C.P., Bertoletti A., Linn Y.C., Wong S.C. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes // Scientific Reports. 2016. Vol. 6 (1). Р. 34310.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phenotypic characterization of blood monocytes of the examined COVID-19 over-infected (group 1) and non-infected (group 2) individuals, absolute number of CD14+CD16- (A), CD14-CD16+ (B) and adhesion receptor-expressing CD11b+ (C) and CD18+ (D) cell subpopulations

Download (291KB)
3. Fig. 2. Phenotypic characterization of the blood neutrophils of the examined individuals over-infected (group 1) and uninfected with COVID-19 (group 2), absolute number of CD11b+ (A), CD16+ (B) and CD18+ (C) cells

Download (198KB)

Copyright (c) 2023 Plekhova N.G., Prosekova E.V., Sitdikova T.A., Dubiy A.A., Mikhailov A.O.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies