Cytokine regulation disbalance: the basis for COVID-19 immunopathogenesis

Capa


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Coronavirus infection activates two main signaling pathways for type I and III IFN and the gene expression and synthesis of proinflammatory cytokines. These cytokines are required for antiviral defense and inflammatory reaction formation. SARS-CoV-2 coronavirus could inhibit the IFN system by depressing signaling pathways for IFN gene expression, synthesis, and secretion. IFN inhibition should be considered the primary reason for coronavirus escape from the immune system and a key factor for COVID-19 immunopathogenesis. Cytokine regulation disbalance in patients with severe COVID-19 is closely associated with low and delayed IFN synthesis, while proinflammatory cytokine production by macrophages and T-lymphocytes continues simultaneously with intensive virus replication. Thus, the reason for COVID-19 immunopathogenesis is the cytokine regulation disbalance where IFN inhibition and intensive proinflammatory cytokine synthesis lead to cytokine storm, inadequate inflammation, respiratory distress syndrome development, respiratory failure, systemic inflammatory complications, and polyorganic failure.

Texto integral

Acesso é fechado

Sobre autores

Andrey Simbirtsev

State Research Institute of Highly Pure Biopreparations

Autor responsável pela correspondência
Email: simbas@mail.ru
ORCID ID: 0000-0002-8228-4240
Código SPIN: 2064-7584

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Rússia, Saint Petersburg

Bibliografia

  1. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020;8(2):e000406. doi: 10.1136/fmch-2020-000406 Erratum in: Fam Med Community Health. 2020;8(2):e000406corr1. doi: 10.1136/fmch-2020-000406corr1
  2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020;395(10223):496. doi: 10.1016/S0140-6736(20)30252-X
  3. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X Erratum in: Lancet Respir Med. 2020;8(4):e26. doi: 10.1016/S2213-2600(20)30085-0
  4. Vazquez C, Horner S. MAVS coordination of antiviral innate immunity. J Virol. 2015;89(14):6974–6977. doi: 10.1128/JVI.01918-14
  5. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
  6. Pestka S, Krause C, Walter M. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x
  7. Prejean C, Colamonici O. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol. 2000;10(2):83–92. doi: 10.1006/scbi.2000.0311
  8. Schoggins J, Wilson S, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. doi: 10.1038/nature09907 Erratum in: Nature. 2015;525(7567):144. doi: 10.1038/nature14554
  9. Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol. 2019;19(10):614–625. doi: 10.1038/s41577-019-0182-z
  10. Ivashkiv L, Donlin L. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49. doi: 10.1038/nri3581
  11. Minkoff JM, tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol. 2023;21(3):178–194. doi: 10.1038/s41579-022-00839-1
  12. Lei X, Dong X, Ma R, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020;11(1):3810. doi: 10.1038/s41467-020-17665-9
  13. Banerjee A, Blanco M, Bruce E, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020;183(5):1325–1339.e21. doi: 10.1016/j.cell.2020.10.004
  14. Xia H, Cao Z, Xie X, et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 2020;33(1):108234. doi: 10.1016/j.celrep.2020.108234
  15. Miorin L, Kehrer T, Sanchez-Aparicio MT, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A. 2020;117(45):28344–28354. doi: 10.1073/pnas.2016650117
  16. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027
  17. Smith N, Goncalves P, Charbit B, et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol. 2021;22(11):1428–1439. doi: 10.1038/s41590-021-01028-7
  18. Bastard P, Rosen L, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  19. Augusto DG, Murdolo LD, Chatzileontiadou DSM, et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023;620(7972):128–136. doi: 10.1038/s41586-023-06331-x
  20. Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis provides genetic evidence that ACE2 infuences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;54(4):382–392. doi: 10.1038/s41588-021-01006-7
  21. Miluzio A, Cuomo A, Cordiglieri C, et al. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine. 2023;87:104390. doi: 10.1016/j.ebiom.2022.104390
  22. Degenhardt F, Ellinghaus D, Juzenas S, et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet. 2022;31(23):3945–3966. doi: 10.1093/hmg/ddac158
  23. COVID-19 Host Genetics Initiative. A second update on mapping the human genetic architecture of COVID-19. Nature. 2023;621(7977):E7–E26. doi: 10.1038/s41586-023-06355-3
  24. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. doi: 10.1126/science.abd4570
  25. Asano T, Boisson B, Onodi F, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62):eabl4348. doi: 10.1126/sciimmunol.abl4348
  26. Van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–673. doi: 10.1001/jama.2020.13719
  27. Levy R, Bastard P, Lanternier F, et al. IFN-α2a Therapy in Two Patients with Inborn Errors of TLR3 and IRF3 Infected with SARS-CoV-2. J Clin Immunol. 2021;41(1):26–27. doi: 10.1007/s10875-020-00933-0
  28. Krieger EA, Samodova OV, Svitich OA, et al. The impact of polymorphic variants of interferon receptor genes on COVID-19 severity and antibiotic resistance. Russian Journal of Infection and Immunity. 2023;13(6):1027–1039. (In Russ). doi: 10.15789/2220-7619-TIO-17537
  29. Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest. 2023;133(3):e166283. doi: 10.1172/JCI166283
  30. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19–25. doi: 10.1016/j.immuni.2020.06.017
  31. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248
  32. Yang L, Xie X, Tu Z, et al. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6(1):255. doi: 10.1038/s41392-021-00679-0
  33. Mandel M., Harari G., Gurevich M., Achiron A. Cytokine prediction of mortality in COVID19 patients. Cytokine. 2020;134:155190. doi: 10.1016/j.cyto.2020.155190
  34. Morrell ED, Bhatraju PK, Sathe NA, et al. Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness. Am J Physiol Lung Cell Mol Physiol. 2022;323(1):L14–L26. doi: 10.1152/ajplung.00049.2022
  35. Silva MJA, Ribeiro LR, Gouveia MIM., et al. Hyperinflammatory Response in COVID-19: A Systematic Review. Viruses. 2023;15(2):553. doi: 10.3390/v15020553
  36. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643. doi: 10.1038/s41591-020-1051-9
  37. Wong C, Lam C, Wu A, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi: 10.1111/j.1365-2249.2004.02415.x
  38. Mahallawi W, Khabour O, Zhang Q, Makhdoum H, Suliman B. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi: 10.1016/j.cyto.2018.01.025
  39. Shirato K, Kizaki T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon. 2021;7(2):e06187. doi: 10.1016/j.heliyon.2021.e06187
  40. Laing A, Lorenc A, Del Molino Del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine. 2020;26(10):1623–1635. doi: 10.1038/s41591-020-1038-6
  41. Manson J, Crooks C, Naja M, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594–e602. doi: 10.1016/S2665-9913(20)30275-7
  42. Ferrara J, Abhyankar S, Gilliland D. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25(1 Pt 2):1216–1217.
  43. Potapnev MP. Cytokine storm. Causes and consequences. Immunologiya. 2021;42(2):175–188. (In Russ). doi: 10.33029/0206-4952-2021-42-2-175-188
  44. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. doi: 10.1002/jmv.25685
  45. Batah S., Fabro A. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239
  46. Banerjee A, El-Sayes N, Budylowski P, et al. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. iScience. 2021;24(5):102477. doi: 10.1016/j.isci.2021.102477
  47. Li C, Wu H, Yan H, et al. T cell responses to whole SARS coronavirus in humans. J Immunol. 2008;181(8):5490–5500. doi: 10.4049/jimmunol.181.8.5490
  48. Parackova Z, Bloomfield M, Klocperk A, Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 2021;109(1):73–76. doi: 10.1002/JLB.4COVCRA0820-481RRR
  49. Aleebrahim-Dehkordi E, Molavi B, Mokhtari M, et al. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. Transpl Immunol. 2022;70:101495. doi: 10.1016/j.trim.2021.101495
  50. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Simbirtsev A.S., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies