Взгляд на патогенез постковидного синдрома

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В 2023 году пандемия новой коронавирусной инфекции, вызванной коронавирусом SARS-CoV-2, объявлена Всемирной организацией здравоохранения закончившейся. По-видимому, она перешла в разряд сезонных респираторных вирусных инфекций. Среди оставшихся после окончания пандемии проблем одно из ведущих мест занимает постковидный синдром — состояние, связанное с сохранением симптомов COVID-19 или вновь появившимися симптомами через 3 месяца после перенесённого заболевания. Наиболее общими механизмами при постковидном синдроме считаются иммунная дисрегуляция, персистенция вируса, продолжающееся генерализованное воспаление, аутоиммунные проявления, тромбозы и повреждение эндотелия сосудов, миокардиты, инфаркты миокарда, ишемическая болезнь, фиброз лёгких. Серьёзным аутоиммунным проявлением у больных с постковидным синдромом выступает высокая частота появления аутоантител, в том числе аутоантител к интерферонам, которые способны блокировать биологическую активность этих защитных цитокинов. В результате сочетанного действия данных механизмов возникает широкий спектр осложнений со стороны многих органов и систем организма, в том числе неврологических и нейропсихических осложнений. Точные патофизиологические механизмы постковидного синдрома и их причинно-следственные связи ещё предстоит установить. Это нужно для того, чтобы на основании накопленного опыта быть готовыми к новым возможным инфекционным вызовам, подойти к ним во всеоружии, избежать новых жертв. В обзоре рассмотрены вопросы симптоматики и патогенеза постковидного синдрома.

Полный текст

Доступ закрыт

Об авторах

Николай А. Климов

Институт экспериментальной медицины

Email: nklimov@mail.ru
ORCID iD: 0000-0002-5243-8085
SPIN-код: 6093-7430

канд. мед. наук

Россия, Санкт-Петербург

Андрей С. Симбирцев

Институт экспериментальной медицины; Государственный научно-исследовательский институт особо чистых биопрепаратов

Автор, ответственный за переписку.
Email: simbas@mail.ru
ORCID iD: 0000-0002-8228-4240
SPIN-код: 2064-7584

д-р мед. наук, профессор, член-корреспондент РАН

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Biancolella M, Colona VL, Luzzatto L, et al. COVID-19 annual update: a narrative review. Hum Genomics. 2023;17(1):68. doi: 10.1186/s40246-023-00515-2
  2. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020;8(2):e000406. doi: 10.1136/fmch-2020-000406 Erratum in: Fam Med Community Health. 2020;8(2):e000406corr1. doi: 10.1136/fmch-2020-000406corr1
  3. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X Erratum in: Lancet Respir Med. 202;8(4):e26. doi: 10.1016/S2213-2600(20)30085-0
  4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020;395(10223):496. doi: 10.1016/S0140-6736(20)30252-X
  5. Soriano JB, Murthy S, Marshall JC, et al.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  6. Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, et al. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J. 2022;19(1):158. doi: 10.1186/s12985-022-01891-2
  7. Raveendran AV, Misra A. Post COVID-19 syndrome (“Long COVID”) and diabetes: challenges in diagnosis and management. Diabetes Metab Syndr. 2021;15(5):102235. doi: 10.1016/j.dsx.2021.102235
  8. Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(1):133–146. doi: 10.1038/s41579-022-00846-2 Erratum in: Nat Rev Microbiol. 2023;21(6):408. doi: 10.1038/s41579-023-00896-0
  9. Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95:7–14. doi: 10.1016/j.bbi.2020.12.031
  10. Granholm AC. Long-term effects of SARS-CoV-2 in the brain: clinical consequences and molecular mechanisms. J Clin Med. 2023;12(9):3190. doi: 10.3390/jcm12093190
  11. Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19. Lancet Neurol. 2020;19(11):883–884. doi: 10.1016/S1474-4422(20)30371-9
  12. Gafson AR, Barthelemy NR, Bomont P, et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143(7):1975–1998. doi: 10.1093/brain/awaa098
  13. Zingaropoli MA, Pasculli P, Barbato C, et al. Biomarkers of neurological damage: From acute stage to post-acute sequelae of COVID-19. Cells. 2023;12(18):2270. doi: 10.3390/cells12182270
  14. Chaumont H, Kaczorowski F, San-Galli A, et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes. Rev Neurol (Paris). 2022;179(3):208–217. doi: 10.1016/j.neurol.2022.11.002
  15. Jeong GU, Lyu J, Kim KD, et al. SARS-CoV-2 infection of microglia elicits proinflammatory activation and apoptotic cell death. Microbiol Spectr. 2022;29(3):e0109122. doi: 10.1128/spectrum.01091-22
  16. Theoharides TC, Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID. Cells. 2023;12(5):688. doi: 10.3390/cells12050688
  17. Skaper SD, Facci L, Zusso M, et al. Neuroinflammation, mast cells, and glia: dangerous liaisons. Neuroscientist. 2017;23(5):478–498. doi: 10.1177/1073858416687249
  18. Appelman B, Charlton BT, Goulding RP, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024;15(1):17. doi: 10.1038/s41467-023-44432-3
  19. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. doi: 10.1093/eurheartj/ehac031
  20. Carlson FR, Bosukonda D, Keck PC, Carlson WD. Multiorgan damage in patients with COVID-19: Is the TGF-β/BMP pathway the missing link? JACC Basic Transl Sci. 2020;5(11):1145–1148. doi: 10.1016/j.jacbts.2020.09.003
  21. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. doi: 10.1001/jamacardio.2020.3557 Erratum in: JAMA Cardiol. 2020;5(11):1308. doi: 10.1001/jamacardio.2020.4648
  22. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–572. doi: 10.1056/NEJMra1608077
  23. Schwensen HF, Borreschmidt LK, Storgaard M, et al. Fatal pulmonary fibrosis: a post-COVID-19 autopsy case. J Clin Pathol. 2021;74(6):400–402. doi: 10.1136/jclinpath-2020-206879
  24. Kouzbari K, Hossan MR, Arrizabalaga JH, et al. Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator. Sci Rep. 2019;9(1):6065. doi: 10.1038/s41598-019-42302-x
  25. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
  26. Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064–1070. doi: 10.1111/jth.15267
  27. Poloni TE, Moretti M, Medici V, et al. COVID-19 pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis. Cells. 2022;11(19):3124. doi: 10.3390/cells11193124
  28. Fallahi P, Elia G, Ragusa F, et al. Thyroid autoimmunity and SARS-CoV-2 infection. J Clin Med. 2023;12(19):6365. doi: 10.3390/jcm12196365
  29. Lania A, Sandri MT, Cellini M, et al. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur J Endocrinol. 2020;183(4):381–387. doi: 10.1530/EJE-20-0335
  30. Brancatella A, Viola N, Santini F, Latrofa F. COVID-induced thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab. 2023;37(2):101742. doi: 10.1016/j.beem.2023.101742
  31. Sathish T, Cao Y, Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Prim Care Diabetes. 2021;15(1):194. doi: 10.1016/j.pcd.2020.08.014
  32. Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149–165. doi: 10.1038/s42255-021-00347-1
  33. Pizzini A, Aichner M, Sahanic S, et al. Impact of vitamin D deficiency on COVID-19: A prospective analysis from the CovILD registry. Nutrients. 2020;12(9):2775. doi: 10.3390/nu12092775
  34. Sapra L, Saini C, Garg B, et al. Long-term implications of COVID-19 on bone health: Pathophysiology and therapeutics. Inflamm Res. 2022;71(9):1025–1040. doi: 10.1007/s00011-022-01616-9
  35. Chen Z, Hu J, Liu L, et al. SARS-CoV-2 causes acute kidney injury by directly infecting renal tubules. Front Cell Dev Biol. 2021;9:664868. doi: 10.3389/fcell.2021.664868
  36. Chang YC, Lee D-J, Wei C-L, et al. SARS-CoV-2 versus other minor viral infections on kidney injury in asymptomatic and mildly symptomatic patients. Virulence. 2022;13(1):1349–1357. doi: 10.1080/21505594.2022.2107602
  37. Benedetti C, Waldman M, Zaza G, et al. COVID-19 and the kidneys: an update. Front Med (Lausanne). 2020;7:423. doi: 10.3389/fmed.2020.00423
  38. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023;401(10393):e21–e33. doi: 10.1016/S0140-6736(23)00810-3
  39. Castanares-Zapatero D, Chalon P, Kohn L, et al. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann Med. 2022;54(1):1473–1487. doi: 10.1080/07853890.2022.2076901
  40. Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther. 2021;227:107879. doi: 10.1016/j.pharmthera.2021.107879
  41. Oronsky B, Larson C, Hammond TC, et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. 2023;64(1):66–74. doi: 10.1007/s12016-021-08848-3
  42. Peluso MJ, Deitchman AN, Torres L, et al. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021;36(6):109518. doi: 10.1016/j.celrep.2021.109518
  43. Ramakrishnan RK, Kashour T, Hamid Q, et al. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front Immunol. 2021;12:2574. doi: 10.3389/fimmu.2021.686029
  44. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis. 2023;76(3):e487–e490. doi: 10.1093/cid/ciac722
  45. Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
  46. Natarajan A, Zlitni S, Brooks EF, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med. 2022;3(6):371–387.e9. doi: 10.1016/j.medj.2022.04.001
  47. Ryan PMD, Caplice NM. Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease? Obesity (Silver Spring). 2020;28(7):1191–1194. doi: 10.1002/oby.22843
  48. Opsteen S, Files JK, Fram T, et al. The role of immune activation and antigen persistence in acute and long COVID. J Invest Med. 2023;71(5):545–562. doi: 10.1177/10815589231158041
  49. Galán M, Vigón L, Fuertes D, et al. Persistent overactive cytotoxic immune response in a Spanish cohort of individuals with long-COVID: identification of diagnostic biomarkers. Front Immunol. 2022;13:848886. doi: 10.3389/fimmu.2022.848886
  50. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210–216. doi: 10.1038/s41590-021-01113-x
  51. Queiroz MAF, Neves PFM, Lima SS, et al. Cytokine profiles associated with acute COVID-19 and long COVID-19 syndrome. Front Cell Infect Microbiol. 2022;12:922422. doi: 10.3389/fcimb.2022.922422
  52. Schultheiss C, Willscher E, Paschold L, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663. doi: 10.1016/j.xcrm.2022.100663
  53. Wechsler JB, Butuci M, Wong A, et al. Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy. 2022;77(4):1288–1291. doi: 10.1111/all.15188
  54. Pisareva E, Badiou S, Mihalovičová L, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209
  55. Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi: 10.1183/13993003.00970-2022
  56. Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel). 2020;9(3):33. doi: 10.3390/antib9030033
  57. Lerner A, Benzvi C, Vojdani A. SARS-CoV-2 gut-targeted epitopes: sequence similarity and cross-reactivity join together for molecular mimicry. Biomedicines. 2023;11(7):1937. doi: 10.3390/biomedicines11071937
  58. Richter AG, Shields AM, Karim A, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99–105. doi: 10.1111/cei.13623
  59. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100
  60. Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur J Case Rep Intern Med. 2021;8(3):002378. doi: 10.12890/2021_002378
  61. Tang SW, Helmeste D, Leonard B. Inflammatory neuropsychiatric disorders and COVID-19 neuroinflammation. Acta Neuropsychiatr. 2021;33(4):165–177. doi: 10.1017/neu.2021.13
  62. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I interferons in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  63. Wang X, Tang Q, Li H, et al. Autoantibodies against type I interferons in COVID-19 infection: A systematic review and meta-analysis. Int J Infect Dis. 2023;130:147–152. doi: 10.1016/j.ijid.2023.03.011
  64. Koning R, Bastard P, Casanova JL. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021;47(6):704–706. doi: 10.1007/s00134-021-06392-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Климов Н.А., Симбирцев А.С., 2025