Oxidative stress as a marker of inflammation in cataracts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Oxidative stress is an important pathogenetic factor of degenerative eye diseases. Oxidative stress can damage tissues, leading to changes in their structure and function, increased vascular permeability, microvascular abnormalities and neovascularization. In turn, these changes can cause damage to the eye; denaturation of the crystalline lens.

The purpose of the study: according to modern literature, to study the role of oxidative stress and inflammation in the development of cataracts.

The molecular mechanisms of cell damage under oxidative stress and the pathogenesis of cataracts caused by oxidative stress have been studied.

Conclusion. Oxidative stress is an important pathogenetic mechanism of degenerative eye diseases. Oxidized phospholipids activate pro-inflammatory molecules and cause inflammation. Oxidative stress in the body is regulated by antioxidant mechanisms. An imbalance of antioxidants affects the lens and causes cataracts. The G/G genotype of SOD1-251 A/G polymorphism may lead to a higher risk of senile cataracts. The content of antioxidants depends on the density of the lens nuclei, on the type of cataract. Non-enzymatic antioxidants have a predominant effect in watery moisture, and enzymatic antioxidants in blood serum in patients with cataracts.

Full Text

Restricted Access

About the authors

O. V. Smirnova

Research Institute for Medical Problems in the North - Division of Federal Research Center «Krasnoyarsk Scientific Center of the Siberian Branch of the RAS»

Author for correspondence.
Email: ovsmirnova71@mail.ru
ORCID iD: 0000-0003-3992-9207

доктор медицинских наук, профессор, заведующая лабораторией клинической патофизиологии 

Russian Federation, Krasnoyarsk

T. O. Zinkina

Research Institute for Medical Problems in the North - Division of Federal Research Center «Krasnoyarsk Scientific Center of the Siberian Branch of the RAS»

Email: tatka-doktor@mail.ru
ORCID iD: 0009-0003-0587-4452

аспирант

Russian Federation, Krasnoyarsk

References

  1. Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults //Oxidative Med. Cell. Longev- 2016. -V.2016, Р. 3164734. doi: 10.1155/2016/3164734.
  2. Sunkireddy, P.; Jha, S.N.; Kanwar, J.R.; Yadav, S.C. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract // Colloids Surf. B Biointerfaces - 2013. - V. 112. P. 554–562. doi: 10.1016/j.colsurfb.2013.07.068.
  3. Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress // Annu. Rev. Biochem. - 2017. - V. 86. P. 715–748. doi: 10.1146/annurev-biochem-061516-045037.
  4. Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A.L.; Binder, C.J.; Stöckl, J. Generation and biological activities of oxidized phospholipids // Antioxid. Redox Signal. - 2010. - V. 12. P. 1009–1059. doi: 10.1155/2019/5080843.
  5. Di Gioia, M.; Zanoni, I. Dooming phagocyte responses: inflammatory effects of endogenous oxidized phospholipids // Front. Endocrinol. - 2021. - V. 12. P. 626842. doi: 10.3389/fendo.2021.626842.
  6. Sadowska-Bartosz, I.; Bartosz, G.; Grune, T.; Sereikaite, J. Role of oxidative, nitrative, and chlorinative protein modifications in aging and age-related diseases // Oxidative Med. Cell. Longev. - 2018. - V. 2018. P. 3267898. doi: 10.1155/2018/3267898.
  7. Shokolenko, I.; Venediktova, N.; Bochkareva, A.; Wilson, G.L.; Alexeyev, M.F. Oxidative stress induces degradation of mitochondrial DNA // Nucleic Acids Res. - 2009. - V. 37. P. 2539–2548. doi: 10.1155/2018/3267898.
  8. Finkel, T. Signal transduction by reactive oxygen species // J. Cell Biol. - 2011. - V. 194. P. 7–15. doi: 10.1093/nar/gkp100.
  9. Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: induction, repair and significance // Mutat. Res. - 2004. - V. 567, p. 1–61. doi: 10.1083/jcb.201102095.
  10. Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis // Trends Mol. Med. - 2006. - V. 12. P. 440–450. doi: 10.1016/j.molmed.2006.07.007.
  11. Krishnamoorthy, R.R.; Crawford, M.J.; Chaturvedi, M.M.; Jain, S.K.; Aggarwal, B.B.; Al-Ubaidi, M.R.; Agarwal, N. Photo-oxidative stress down-modulates the activity of nuclear factor-kappaB via involvement of caspase-1, leading to apoptosis of photoreceptor cells // J. Biol. Chem. - 1999. - V. 274. P. 3734–3743. doi: 10.1074/jbc.274.6.3734.
  12. Aitbaev, K.A.; Murkamilov, I.T.; Fomin, V.V. Molecular mechanisms of aging: The role of oxidative stress and epigenetic modifications // Adv. Gerontol. - 2019. - V. 32. P. 20–28. doi: 10.1134/S2079057019040027.
  13. Nakka, V.P.; Prakash-Babu, P.; Vemuganti, R. Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries // Mol. Neurobiol. - 2016. - V. 53. P. 532–544. doi: 10.1007/s12035-014-9029-6.
  14. Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs // Cell Death Differ. - 2015. - V. 22. P. 377–388. doi: 10.1038/cdd.2014.150.
  15. Klionsky, D.J.; Abeliovich, H.; Agostinis, P.; Agrawal, D.K.; Aliev, G.; Askew, D.; Baba, M.; Baehrecke, E.H.; Bahr, B.A.; Ballabio, A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes //Autophagy. - 2008. - V. 4. P. 151–175. doi: 10.4161/авто.5338.
  16. Hsueh, Y.J.; Meir, Y.J.; Yeh, L.K.; Wang, T.K.; Huang, C.C.; Lu, T.T.; Cheng, C.M.; Wu, W.C.; Chen, H.C. Topical ascorbic acid ameliorates oxidative stress-induced corneal endothelial damage via suppression of apoptosis and autophagic flux blockage // Cells. - 2020. - V. 9. P. 943. doi: 10.3390/cells9040943.
  17. Yan, X.Y.; Zhong, X.R.; Yu, S.H.; Zhang, L.C.; Liu, Y.N.; Zhang, Y.; Sun, L.K.; Su, J. P62 aggregates mediated Caspase 8 activation is responsible for progression of ovarian cancer // J. Cell. Mol. Med. - 2019. - V. 23. P. 4030–4042. doi: 10.1111/jcmm.14288.
  18. Laporte, C.; Kosta, A.; Klein, G.; Aubry, L.; Lam, D.; Tresse, E.; Luciani, M.F.; Golstein, P. A necrotic cell death model in a protist // Cell Death Differ. - 2007. - V.14. P. 266–274. doi: 10.1038/sj.cdd.4401994.
  19. Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding oxidants and antioxidants: Classical team with new players // J. Food Biochem. - 2020. - V. 44. P. e13145. doi: 10.1111/jfbc.13145.
  20. Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative nitrosative stress: Current state // Nutr. J. - 2016. - V. 15, P. 71. doi: 10.1111/jfbc.13145.
  21. Lu, J.; Holmgren, A. The thioredoxin antioxidant system // Free Radic. Biol. Med. - 2014. - V. 66, P. 75–87. doi: 10.1016/j.freeradbiomed.2013.07.036.
  22. Singhal, S.S.; Singh, S.P.; Singhal, P.; Horne, D.; Singhal, J.; Awasthi, S. Antioxidant role of glutathione S-transferases: 4- Hydroxynonenal, a key molecule in stress-mediated signaling //Toxicol. Appl. Pharmacol. - 2015. - V. 289, P. 361–370. doi: 10.1016/j.taap.2015.10.006.
  23. Miron'czuk-Chodakowska, I., Witkowska, A. M., Zujko, M. E. Endogenous non-enzymatic antioxidant sinter human body // Adv. Med. Sci. - 2018. - V. 63, P. 68–78. doi: 10.1016/j.advms.2017.05.005.
  24. Halliwell, B.; Gutteridge, J.M.C. The antioxidants of human extracellular fluids // Arch. Biochem. Biophys. - 1990 - V. 280, P. 1–8. doi: 10.1016/0003-9861(90)90510-6.
  25. Delamere, N.A. Ascorbic acid and the eye // In Subcellular Biochemistry: Ascorbic Acid: Biochemistry and Biomedical Cell Biology/ Harris, J.R., Ed.; Springer: Boston, MA, USA. - 1996; pp. 313–329. doi: 10.1007/BF02024159.
  26. Bragt, P.C.; Bonta, I.L. Oxidant stress during inflammation: Anti-inflammatory effects of antioxidants //Agents Actions - 1980. - V. 10. P. 536–539.
  27. Augustin, A.J.; Dick, H.B. Oxidative tissue damage after phacoemulsification: Influence of ophthalmic viscosurgical devices // J. Cataract Refract. Surg. - 2004. - V. 30. P. 424–427. doi: 10.1016/S0886-3350(03)00577-7.
  28. Özer, M.A.; Polat, N.; Özen, S.; Parlakpınar, H.; Ekici, K.; Polat, A.; Vardı, N.; Tanbek, K.; Yildiz, A. Effects of molsidomine on retinopathy and oxidative stress induced by radiotheraphy in rat eyes // Curr. Eye Res. - 2017. - V. 42. P. 803–809. doi: 10.1080/02713683.2016.1238943.
  29. Bergandi, L.; Skorokhod, O.A.; Franzone, F.; La Grotta, R.; Schwarzer, E.; Nuzzi, R. Induction of oxidative stress in human aqueous and vitreous humors by Nd:YAG laser posterior capsulotomy // Int. J. Ophthalmol. - 2018. - V. 11. P. 1145–1151.
  30. Hull, D.S.; Green, K. Oxygen free radicals and corneal endothelium // Lens Eye Toxic. Res. - 1989. - V. 6. P. 87–91.
  31. Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy // Exp. Diabetes Res. - 2007. - V. 2007. P. 43603. doi: 10.1155/2007/43603.
  32. Beatty, S.; Koh, H.; Phil, M.; Henson, D.; Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular degeneration // Surv. Ophthalmol. - 2000. - V. 45. P. 115–134. doi: 10.1016/S0039-6257(00)00140-5.
  33. Williams, D.L. Oxidative stress and the eye // Vet. Clin. N. Am. Small Anim. Pract. - 2008. - V. 38. P. 179–192. doi: 10.1016/j.cvsm.2007.10.006.
  34. Sacca, S.C.; Roszkowska, A.M.; Izzotti, A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases // Mutat. Res. 2013. - V. 752. P. 153–171. doi: 10.1016/j.mrrev.2013.01.001.
  35. Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010 // Br. J. Ophthalmol. - 2012. - V. 96. P. 614. doi: 10.1136/bjophthalmol-2011-300539.
  36. Moreau, K.L.; King, J.A. Protein misfolding and aggregation in cataract disease and prospects for prevention //Trends Mol. Med. - 2012. - V. 18. P. 273–282. doi: 10.1016/j.molmed.2012.03.005.
  37. Kisic, B.; Miric, D.; Zoric, L.; Ilic, A.; Dragojevic, I. Antioxidant capacity of lenses with age-related cataract //Oxidative Med. Cell. Longev. - 2012. - V. 2012. P. 467130. doi: 10.1155/2012/467130.
  38. Spector, A. Review: Oxidative stress and disease // J. Ocul. Pharmacol. Ther. - 2000. - V. 16. P. 193–201. doi: 10.1089/jop.2000.16.193.
  39. Kisic, B.; Miric, D.; Zoric, L.; Ilic, A. Role of lipid peroxidation in the pathogenesis of age-related cataract // In Lipid Peroxidation; IntechOpen: Rijeka, Croatia, 2012.
  40. Miric, D.; Kisic, B.; Zoric, L.; Miric, B.; Mirkovic, M.; Mitic, R. Influence of cataract maturity on aqueous humor lipid peroxidation markers and antioxidant enzymes // Eye. - 2014. - V. P. 28, 72. doi: 10.1038/eye.2013.207.
  41. Zhou, Y.F.; Guo, B.; Ye, M.J.; Liao, R.F.; Li, S.L. Protective effect of rutin against H2O2-induced oxidative stress and apoptosis in human lens epithelial cells // Curr. Eye Res. - 2016. V. 41. P. 933–942. doi: 10.3109/02713683.2015.1082186.
  42. Delamere, N.A.; Tamiya, S. Expression, regulation and function of Na,K-ATPase in the lens // Prog. Retin. Eye Res. - 2004. - V. 23. P. 593–615. doi: 10.1016/j.preteyeres.2004.06.003.
  43. Kim, J.Y.; Park, J.H.; Kang, S.S.; Hwang, S.B.; Tchah, H. Topical nerve growth factor attenuates streptozotocin-induced diabetic cataracts via polyol pathway inhibition and Na(+)/K(+)-ATPase upregulation // Exp. Eye Res. - 2021. V. 202. P. 108319. doi: 10.1016/j.exer.2020.108319.
  44. Chen, Y.; Mehta, G.; Vasiliou, V. Antioxidant defenses in the ocular surface // Ocul. Surf. - 2009. - V. 7. P. 176–185. doi: 10.1016/S1542-0124(12)70185-4.
  45. Katta, A.V.; Katkam, R.V.; Geetha, H. Lipid peroxidation and the total antioxidant status in the pathogenesis of age related and diabetic cataracts: A study on the lens and blood // J. Clin. Diagn. Res. - 2013. - V. 7. P. 978–981. doi: 10.7860/JCDR/2013/4937.3099.
  46. Babizhayev, M.A. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: Disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease // Cell Biochem. Funct. - 2011. - V. 29. P. 183–206.
  47. Zhang, Y.; Zhang, L.; Sun, D.; Li, Z.; Wang, L.; Liu, P. Genetic polymorphisms of superoxideedismutases, catalase, and glutathione peroxidase in age-related cataract // Mol. Vis. - 2011. - V. 17. P. 2325–2332.
  48. Wang, X.; Sun, J.; Dang, G.F.; Gao, Y.; Duan, L.; Wu, X. Y. Antioxidant content and cytological examination of aqueous fluid from patients with age-related cataracts at different stages // Genet. Mol. Res. - 2015. - V. 14. P. 6251–6255. doi: 10.4238/2015.June.9.11.
  49. Elmazar, H.M.; Elmadbouh, I.; Mandour, S.S.; Al Ariny, G.M.; Ibrahim, A.M. Association between cataract progression and ischemia-modified albumin in relation to oxidant-antioxidant profiles in the serum, aqueous humor, and lens // J. Cataract Refract. Surg. - 2018. - V. 44. P. 134–139. doi: 10.1016/j.jcrs.2017.10.051.
  50. Yanshole, V.V.; Yanshole, L.V.; Snytnikova, O.A.; Tsentalovich, Y.P. Quantitativemetabolomic analysis of changes in the lens and aqueous humor under development of age-related nuclear cataract // Metabolomics - 2019. - V. 15. P. 29. doi: 10.1007/s11306-019-1495-4.
  51. Krepler, K.; Schmid, R. Alpha-tocopherolinplasma, red blood cells and lenses with and without cataract // Am. J. Ophthalmol. - 2005. - V. 139. P. 266–270. doi: 10.1016/j.ajo.2004.09.031.
  52. Zoric', L.; Aleksic', P.; Korac'evic', D.; Trajkovic', G. The aqueous humour antioxidative capacity indifferent types and color of the age-related cataract // Vojn. Pregl. - 2005. - V. 62. P. 909–913. doi: 10.2298/VSP0512909Z.
  53. Qin, Y.J.; Chan, S.O.; Lin, H.L.; Zhang, Y.Q.; Chen, Y.L.; Niu, Y..; Xie, W.J.; Chu, W.K.; Pang, C.P.; Zhang, H.Y. Elevatedlevelof uric acid in aqueous humour is associated with posterior subcapsular cataract in human lens // Clin. Exp. Ophthalmol. - 2020. - V. 48. P. 1183–1191. doi: 10.1111/ceo.13835.
  54. Canadananovic', V.; Latinovic', S.; Barišic', S.; Babic', N.; Jovanovic', S. Age-related changes of vitamin C levels in aqueous humour // Vojn. Pregl. - 2015. - V. 72. P. 823–826. doi: 10.2298/VSP131212063C.
  55. Selvi, R.; Angayarkanni, N.; Biswas, J.; Ramakrishnan, S. Total antioxidant capacity in Eales’disease, uveitis&cataract //Indian J. Med. Res. - 2011. - V. 134. P. 83–90.
  56. Wang, A.; Han, J.; Jiang, Y.; Zhang, D. Association of vitamin A and β-carotenewith risk forage-related cataract: Ameta-analysis // Nutrition. - 2014. - V. 30. P. 1113–1121. doi: 10.1016/j.nut.2014.02.025.
  57. Tsao, Y.T.; Wu, W.C.; Chen, K.J.; Yeh, L.K.; Hwang, Y.S.; Hsueh, Y.J.; Chen, H.C.; Cheng, C.M. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health // Bioeng. Transl. Med. - 2021. - V. 6. P. e10199. doi: 10.1002/btm2.10199.
  58. Haung, W.; Koralewska-Makár, A.; Bauer, B.; Akesson, B. Extracellul arglutathioneperoxidase and ascorbicacidinaqueous humor and serum of patients operated on for cataract // Clin. Chim. Acta. - 1997. - V. 261. P. 117–130. doi: 10.1016/S0009-8981(97)06520-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Smirnova O.V., Zinkina T.O.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies