Features of the respiratory burst state of neutrophils and the activity of NAD(P)-dependent dehydrogenases in patients with widespread purulent peritonitis in the prognosis of the development of sepsis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Aim: Studying of the respiratory burst state and NAD(P)-dependent dehydrogenases activities in blood neutrophils features in the forecast of the development of abdominal sepsis in patients with widespread purulent peritonitis (WPP).

Materials and methods. The study involved 50 patients with WPP in the preoperative period. Abdominal sepsis was developed by 35 patients (70.0%) from 5 to 10 days postoperative period, 15 patients (30.0%) hadn’t complications. The respiratory burst condition of blood neutrophils was examined using a chemiluminescent assay. Intracellular activity of the NAD- and NADP-dependent dehydrogenases was researched with using bioluminescent methods.

Results. It was found that patients with WPP whose dynamics of the preoperative period will develop sepsis the chemiluminescent activity of blood neutrophils was characterized by a reduced level of spontaneous synthesis of the primary reactive oxygen species (ROS) and elevated levels of spontaneous synthesis of secondary ROS relative of the indicators identified in patients without subsequent complications. The feature of neutrophil metabolism in WPP patients without subsequent development of sepsis was high activity of the anaerobic lactate dehydrogenase reaction and decrease in activity of the NADP-dependent decarboxylating malate dehydrogenase. In patients with WPP and the subsequent development of sepsis was found high level of NAD-dependent substrates outflow citric acid cycle in the reaction of amino acid metabolism via glutamate dehydrogenase that may affect the activity of aerobic respiration in the neutrophils. Using correlation analysis was found that the intensity of the neutrophils respiratory burst in patients with no subsequent complications depends on the activity of anaerobic glycolysis.

Conclusion. The established differences in the state of the respiratory burst and the activity of enzymes in neutrophils in patients with WPP, in depending on the subsequent development of the sepsis, determine the possibility of developing the method of forecasting complications and developing immunoactive therapy in the postoperative period of WPP. 

全文:

受限制的访问

作者简介

Andrey Savchenko

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0001-5829-672X
SPIN 代码: 3132-8260

д.м.н., профессор, заведующий лабораторией клеточно-молекулярной физиологии и патологии 

俄罗斯联邦, Krasnoyarsk

Alexander Borisov

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

编辑信件的主要联系方式.
Email: 2410454@mail.ru
ORCID iD: 0000-0002-9026-2615
SPIN 代码: 9570-2254

к.м.н., ведущий научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

俄罗斯联邦, Krasnoyarsk

Ivan Gvozdev

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0002-1041-9871
SPIN 代码: 6203-4651

младший научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

俄罗斯联邦, Krasnoyarsk

参考

  1. Савельев В.В., Винокуров М.М., Попов В.В., Бадагуева В.В. Выбор хирургической лечебной тактики и результаты лечения при распространенном гнойном перитоните в многопрофильном хирургическом стационаре. Якутский медицинский журнал. 2022; 77(1):53-57. doi: 10.25789/YMJ.2022.77.14.
  2. Di Franco S., Alfieri A., Fiore M. et al. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics (Basel). 2022; 11(10):1347. doi: 10.3390/antibiotics11101347.
  3. Haque L.Y., Garcia-Tsao G. A Historical Overview of Spontaneous Bacterial Peritonitis: From Rare to Resistant. Clin. Liver Dis. (Hoboken). 2021; 18 (Suppl. 1):63-75. doi: 10.1002/cld.1122.
  4. Савченко А.А., Борисов А.Г., Кудрявцев И.В., Беленюк В.Д. Особенности фенотипа NKT-клеток в зависимости от исхода распространенного гнойного перитонита. Инфекция и иммунитет. 2022; 12(6):1040-1050. doi: 10.15789/2220-7619-DPP-2004.
  5. Pimentel R., Gregório C., Figueiredo P. Antibiotic prophylaxis for prevention of spontaneous bacterial peritonitis in liver cirrhosis: systematic review. Acta Gastroenterol. Belg. 2021; 84(2):333-342. doi: 10.51821/84.2.333.
  6. Yang L., Liu S., Zhang Q. et al. Overexpression of ascitic interleukin-35 induces CD8+ T cell exhaustion in liver cirrhotic patients with spontaneous bacterial peritonitis. Int. Immunopharmacol. 2022; 108:108729. doi: 10.1016/j.intimp.2022.108729.
  7. Савченко А.А., Борисов А.Г., Здзитовецкий Д.Э. и др. Зависимость респираторного взрыва нейтрофилов от состояния их метаболизма у больных с разной степенью тяжести острого деструктивного панкреатита. Медицинская иммунология. 2019; 21(1):77-88. https://doi.org/10.15789/1563-0625-2019-1-77-88.
  8. Lee M., Lee S.Y., Bae Y.S. Emerging roles of neutrophils in immune homeostasis. BMB Rep. 2022; 55(10):473-480. doi: 10.5483/BMBRep.2022.55.10.115.
  9. Wang J., Wang J. Neutrophils, functions beyond host defense. Cell Immunol. 2022; 379:104579. doi: 10.1016/j.cellimm.2022.104579.
  10. Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно-воспалительных заболеваний. Инфекция и иммунитет. 2017; 7(4):327-340. doi: 10.15789/2220-7619-2017-4-327-340.
  11. Herring S.E., Mao S., Bhalla M. et al. Mitochondrial ROS production by neutrophils is required for host antimicrobial function against Streptococcus pneumoniae and is controlled by A2B adenosine receptor signaling. PLoS Pathog. 2022; 18(11):e1010700. doi: 10.1371/journal.ppat.1010700.
  12. Xiang Y., Dai J., Li Y. et al. ROS-activated CXCR2+ neutrophils recruited by CXCL1 delay denervated skeletal muscle atrophy and undergo P53-mediated apoptosis. Exp. Mol. Med. 2022; 54(7):1011-1023. doi: 10.1038/s12276-022-00805-0.
  13. Gamara J., Davis L., Leong A.Z. et al. Arf6 regulates energy metabolism in neutrophils. Free Radic. Biol. Med. 2021; 172:550-561. doi: 10.1016/j.freeradbiomed.2021.07.001.
  14. Chokesuwattanaskul S., Fresneda Alarcon M., Mangalakumaran S. et al. Metabolic Profiling of Rheumatoid Arthritis Neutrophils Reveals Altered Energy Metabolism That Is Not Affected by JAK Inhibition. Metabolites. 2022; 12(7):650. doi: 10.3390/metabo12070650.
  15. Савченко А.А., Гринштейн Ю.И., Дробышева А.С. Особенности метаболического обеспечения респираторного взрыва нейтрофилов крови и мокроты у больных внебольничной пневмонией. Пульмонология. 2019; 29(2):167-174. doi: 10.18093/0869-0189-2019-29-2-167-174.
  16. Losa J., Leupold S., Alonso-Martinez D. et al. Perspective: a stirring role for metabolism in cells. Mol. Syst. Biol. 2022; 18(4):e10822. doi: 10.15252/msb.202110822.
  17. Qin Y., Gao C., Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front. Immunol. 2022; 13:828191. doi: 10.3389/fimmu.2022.828191.
  18. Le Gall J.-R., Lemeshow S., Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993; 270:2957-2963.
  19. Linder M.M., Wacha H., Feldmann U. et al. Der Mannheimer Peritonitis-Index. Ein Instrument zur intraoperativen Prognose der Peritonitis. Chirurg. 1987; 58(2):84-92.
  20. Vincent J.L., Moreno R., Takala J. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996; 22(7):707-710. doi: 10.1007/BF01709751.
  21. Bone R.S., Balk R.A.B., Cerra F.B. American college of Chest Physicians. Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guide lines for the use of innovative therapies in sepsis. Crit. Care Med. 1992; 20(6):864-874.
  22. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания. Вестник Российской академии медицинских наук. 2014; 69(5-6):23-28. doi: 10.15690/vramn.v69i5-6.1039.
  23. Савченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом. Бюллетень экспериментальной биологии и медицины. 2015; 159(5):656-660.
  24. Abdussalam A., Chen Y., Yuan F. et al. Dithiothreitol-Lucigenin Chemiluminescent System for Ultrasensitive Dithiothreitol and Superoxide Dismutase Detection. Anal Chem. 2022; 94(31):11023-11029. doi: 10.1021/acs.analchem.2c01690.
  25. Theron A.J., Anderson R., Madzime M. et al. Pro-Inflammatory Interactions of Dolutegravir with Human Neutrophils in an In Vitro Study. Molecules. 2022; 27(24):9057. doi: 10.3390/molecules27249057.
  26. Chen P.H., Tjong W.Y., Yang H.C. et al. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis. Int. J. Mol. Sci. 2022; 23(4):2017. doi: 10.3390/ijms23042017.
  27. Katayama N., Iwazumi K., Suzuki H. et al. Malic Enzyme, not Malate Dehydrogenase, Mainly Oxidizes Malate That Originates from the Tricarboxylic Acid Cycle in Cyanobacteria. mBio. 2022; 13(6):e0218722. doi: 10.1128/mbio.02187-22.
  28. Xu F.L., Wu X.H., Chen C. et al. SLC27A5 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by downregulating glutathione reductase. Cell Death Dis. 2023; 14(1):22. doi: 10.1038/s41419-023-05558-w.
  29. Krysa S.J., Allen L.H. Metabolic Reprogramming Mediates Delayed Apoptosis of Human Neutrophils Infected With Francisella tularensis. Front. Immunol. 2022; 13:836754. doi: 10.3389/fimmu.2022.836754.
  30. Cao Z., Zhao M., Sun H. et al. Roles of mitochondria in neutrophils. Front. Immunol. 2022; 13:934444. doi: 10.3389/fimmu.2022.934444.
  31. White K., Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res. 2023; 427:108659. doi: 10.1016/j.heares.2022.108659.
  32. Altea-Manzano P., Vandekeere A., Edwards-Hicks J. et al. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Mol. Cell. 2022; 82(23):4537-4547. doi: 10.1016/j.molcel.2022.10.005.
  33. Cristobal J.R., Richard J.P. Glycerol-3-Phosphate Dehydrogenase: The K120 and K204 Side Chains Define an Oxyanion Hole at the Enzyme Active Site. Biochemistry. 2022; 61(10):856-867. doi: 10.1021/acs.biochem.2c00053.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Savchenko A.A., Borisov A.G., Gvozdev I.I., 2023

##common.cookie##