Features of phagocytic and chemiluminescent activity of neutrophils when exposed to polyprenols in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: Studying of the features of phagocytic activity and the state of the respiratory burst of neutrophils under the influence of polyprenols in vitro.

Materials and methods. The study involved 30 relatively healthy donors aged 23-59 years from whose peripheral blood neutrophilic granulocytes were isolated to determine phagocytic and chemiluminescent activity. The isolated cells were incubated for 30 minutes with polyprenols in vitro. The level of phagocytosis of immature and mature neutrophils was determined by flow cytometry using FITC-labeled staphylococcal protein A. The state of the respiratory burst was assessed using chemiluminescent analysis.

Results. It was found that the levels of phagocytic index (PI) and number (PN) of mature neutrophils were reduced after incubation with polyprenols relative to initial and control values. The values of PI and PN of immature neutrophils under the influence of polyprenols and during control incubation were decreased relative to the initial values. The intensity maximum and area under the curve of spontaneous and zymosan-induced lucigenin- and luminol-dependent chemiluminescence of the neutrophils were reduced after incubation with polyprenols.

Conclusion. The effect of polyprenols on neutrophilic granulocytes in vitro leads to a decrease in activity in respiratory burst cells, which is realized in blocking by polyprenols the interaction of primary and secondary ROS with chemiluminescent indicators by the mechanism of primary antioxidants. The binding of ROS by polyprenols also manifests itself in a decrease in the phagocytic activity of mature neutrophils while maintaining the phagocytic activity of immature cells at the level of control incubation. In general, polyprenols exhibit anti-inflammatory activity when exposed in vitro to neutrophilic granulocytes.

Full Text

Restricted Access

About the authors

Andrey A. Savchenko

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0001-5829-672X
SPIN-code: 3132-8260

д.м.н., профессор, заведующий лабораторией клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

Vasily D. Belenyuk

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0003-2848-0846
SPIN-code: 6195-6630

младший научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

Ivan I. Gvozdev

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0002-1041-9871
SPIN-code: 6203-4651

младший научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

Alexander G. Borisov

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Author for correspondence.
Email: 2410454@mail.ru
ORCID iD: 0000-0002-9026-2615
SPIN-code: 9570-2254

к.м.н., ведущий научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

References

  1. Козлов В.А., Тихонова Е.П., Савченко А.А. и др. Клиническая иммунология. Практическое пособие для инфекционистов. – Красноярск: Поликор. – 2021. – 576 с.
  2. Wang Z., Peng Y., Chen M. et al. The Prevalence of Irritable Bowel Syndrome after Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Their Association: A Systematic Review and Meta-Analysis of Observational Studies. J. Clin. Med. 2023; 12(5):1865. doi: 10.3390/jcm12051865.
  3. Daëron M. The immune system as a system of relations. Front. Immunol. 2022; 13:984678. doi: 10.3389/fimmu.2022.984678.
  4. Saez A., Herrero-Fernandez B., Gomez-Bris R. et al. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023; 24(2):1526. doi: 10.3390/ijms24021526.
  5. Gierlikowska B., Stachura A., Gierlikowski W., Demkow U. The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis-A Review. Int. J. Mol. Sci. 2022; 23(9):5076. doi: 10.3390/ijms23095076.
  6. Hallett M.B. Localisation of Intracellular Signals and Responses during Phagocytosis. Int. J. Mol. Sci. 2023; 24(3):2825. doi: 10.3390/ijms24032825.
  7. Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно-воспалительных заболеваний. Инфекция и иммунитет. 2017; 7(4):327-340. doi: 10.15789/2220-7619-2017-4-327-340.
  8. El-Benna J., Hurtado-Nedelec M., Gougerot-Pocidalo M.A., Dang P.M. Effects of venoms on neutrophil respiratory burst: a major inflammatory function. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021; 27:e20200179. doi: 10.1590/1678-9199-JVATITD-2020-0179.
  9. Quach A., Glowik S., Putty T., Ferrante A. Delayed Blood Processing Leads to Rapid Deterioration in the Measurement of the Neutrophil Respiratory Burst by the Dihydrorhodamine-123 Reduction Assay. Cytometry B Clin. Cytom. 2019; 96(5):389-396. doi: 10.1002/cyto.b.21767.
  10. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания. Вестник Российской академии медицинских наук. 2014; 69(5-6):23-28. doi: 10.15690/vramn.v69i5-6.1039.
  11. Biller J.D., Takahashi L.S. Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Cienc. 2018; 90(4):3403-3414. doi: 10.1590/0001-3765201820170730.
  12. Mongirdienė A., Skrodenis L., Varoneckaitė L. et al. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines. 2022; 10(3):602. doi: 10.3390/biomedicines10030602.
  13. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 2020; 21(7):363-383. doi: 10.1038/s41580-020-0230-3.
  14. Антипина А.А., Попов В.С., Балабаньян В.Ю. Полипренолы как оригинальный класс природных соединений, обладающих широким спектром фармакологической активности. Фармация, 2021; 70(5): 15-21. doi: 10.29296/25419218-2021-05-02.
  15. Кочнева Е.В., Махароблишвили Д.В., Кольцова Ю.Е. Значение полипренолов в клинической и экспериментальной практике. Вопросы диетологии. 2020; 10(2): 35-43.doi: 10.20953/2224-5448-2020-2-35-43.
  16. Zhang Q., Huang L., Zhang C., Xie P. et al. Synthesis and biological activity of polyprenols. Fitoterapia. 2015; 106:184-193. doi: 10.1016/j.fitote.2015.09.008.
  17. Савченко А.А., Гвоздев И.И., Борисов А.Г. и др. Особенности фагоцитарной активности и состояния респираторного взрыва нейтрофилов крови у больных распространенным гнойным перитонитом в динамике послеоперационного периода. Инфекция и иммунитет. 2017; 7(1):51-60. doi: 10.15789/2220-7619-2017-1-51-60.
  18. Сыров В.Н., Вайс Е.В., Хидырова Н.К. и др. Результаты экспериментального изучения иммунотропного действия полипренолов, выделенных из Alcea nudiflora. Химико-фармацевтический журнал. 2016; 50(1); 24-27. doi: 10.30906/0023-1134-2016-50-1-24-27.
  19. Georgiou C.D., Margaritis L.H. Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. Int. J. Mol. Sci. 2021; 22(18):10041. doi: 10.3390/ijms221810041.
  20. Ogboo B.C., Grabovyy U.V., Maini A. et al. Architecture of the NADPH oxidase family of enzymes. Redox Biol. 2022; 52:102298. doi: 10.1016/j.redox.2022.102298.
  21. Patrice T., Rozec B., Sidoroff A. et al. Influence of Vitamins on Secondary Reactive Oxygen Species Production in Sera of Patients with Resectable NSCLC. Diseases. 2016; 4(3):25. doi: 10.3390/diseases4030025.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Savchenko A.A., Belenyuk V.D., Gvozdev I.I., Borisov A.G.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies