The predicting value of circular DNA particles of T- and B-cell receptors for the dismal acute period outcomes and the disease severity of COVID-19 infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The pandemic of the new coronavirus infection COVID-19, caused by the SARS-CoV-2 virus, continues to be a serious problem for the entire global community. Currently, most patients experience mild COVID-19, with only about 20% of those infected requiring hospitalization. The severe course of COVID-19 is most often associated with damage to the patient’s bronchopulmonary system by the virus and serious abnormalities, including damage to the air-hematological barrier, systemic inflammation, dysfunction of the immune system and the addition of secondary infections. Severe disease and poor outcome in hospitalized patients with COVID-19 may be associated with lymphopenia in combination with neutrophilia. Restoring the number of lymphocytes is important to improve the prognosis of the patient’s outcome. Patients with COVID-19 experience an immune imbalance where systemic inflammation and dysfunction of circulating T and B cells lead to more severe disease. TREC/KREC analysis can characterize the function of the central organs of the immune system and its relationship with clinical and laboratory data. Decreased TREC/KREC levels were observed in patients with unfavorable disease outcomes compared to patients with favorable disease outcomes. Additionally, a higher neutrophil to lymphocyte ratio was found. Levels of TREC and KREC in the blood negatively correlate with the neutrophil-lymphocyte ratio. Thus, the TREC/KREC assay is a potential prognostic marker for assessing the severity and outcome of COVID-19.

Full Text

Restricted Access

About the authors

Tatiana A. Elistratova

Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Email: 2410454@mail.ru
ORCID iD: 0000-0003-1969-5482
SPIN-code: 2080-0068

ассистент кафедры инфекционных болезней и эпидемиологии с курсом ПО 

Russian Federation, Krasnoyarsk

Elena P. Tikhonova

Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Email: 2410454@mail.ru
ORCID iD: 0000-0001-6466-9609
SPIN-code: 8376-7373

д.м.н., профессор, заведующая кафедрой инфекционных болезней и эпидемиологии с курсом ПО 

Russian Federation, Krasnoyarsk

Andrey A. Savchenko

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Email: 2410454@mail.ru
ORCID iD: 0000-0001-5829-672X
SPIN-code: 3132-8260

д.м.н., профессор, заведующий лабораторией клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

Alexander G. Borisov

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences of the «Research Institute of Medical Problems of the North»

Author for correspondence.
Email: 2410454@mail.ru
ORCID iD: 0000-0002-9026-2615
SPIN-code: 9570-2254

к.м.н., ведущий научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии 

Russian Federation, Krasnoyarsk

References

  1. Щелканов М.Ю., Попова А.Ю., Дедков В.Г. и др. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae). Инфекция и иммунитет. 2020; 10(2):221-246. doi: 10.15789/2220-7619-HOI-1412.
  2. Leao J.C., Gusmao T.P.L., Zarzar A.M. et al. Coronaviridae-Old friends, new enemy! Oral Dis. 2022; 28(Suppl. 1):858-866. doi: 10.1111/odi.13447.
  3. Львов Д.К., Альховский С.В., Колобухина Л.В. и др. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1):6-15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15.
  4. Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: a systematic review of invitro studies. J. Virus Erad. 2023; 9(2):100327. doi: 10.1016/j.jve.2023.100327.
  5. Tang G., Liu Z., Chen D. Human coronaviruses: Origin, host and receptor. J. Clin. Virol. 2022; 155:105246. doi: 10.1016/j.jcv.2022.105246.
  6. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019; 17(3):181-192. doi: 10.1038/s41579-018-0118-9.
  7. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265-269. doi: 10.1038/s41586-020-2008-3.
  8. Habibzadeh S., Hashemzadeh N., Baradaran H. et al. COVID-19: From the Molecular Mechanisms to Treatment. Tanaffos. 2022; 21(2):113-131. PMID: 36879738.
  9. Tay M.Z., Poh C.M., Rénia L. et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev Immunol. 2020 Jun;20(6):363-374. doi: 10.1038/s41577-020-0311-8.
  10. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242. doi: 10.1001/jama.2020.2648.
  11. Liu Y., Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel). 2023; 11(9):1472. doi: 10.3390/vaccines11091472.
  12. Mazzoni A., Salvati L., Maggi L. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. 2020; 130(9):4694-4703. doi: 10.1172/JCI138554.
  13. Ruiz-Aravena M., McKee C., Gamble A. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2022; 20(5):299-314. doi: 10.1038/s41579-021-00652-2.
  14. Костинов М.П., Маркелова Е.В., Свитич О.А., Полищук В.Б. Иммунные механизмы SARS-CoV-2 и потенциальные препараты для профилактики и лечения COVID-19. Пульмонология. 2020;30(5):700-708. https://doi.org/10.18093/0869-0189-2020-30-5-700-708.
  15. Liu Q., Xu K., Wang X., Wang W. From SARS to COVID-19: What lessons have we learned? J. Infect. Public Health. 2020; 13(11):1611-1618. doi: 10.1016/j.jiph.2020.08.001.
  16. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242. doi: 10.1001/jama.2020.2648.
  17. Andrews H.S., Herman J.D., Gandhi R.T. Treatments for COVID-19. Annu. Rev. Med. 2023; Sep 18. doi: 10.1146/annurev-med-052422-020316.
  18. Chang L., Yan Y., Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 2020; 34(2):75-80. doi: 10.1016/j.tmrv.2020.02.003.
  19. Kratzer B., Schlax L.C., Gattinger P. et al. Combined assessment of S- and N-specific IL-2 and IL-13 secretion and CD69 neo-expression for discrimination of post-infection and post-vaccination cellular SARS-CoV-2-specific immune response. Allergy. 2022; 77(11):3408-3425. doi: 10.1111/all.15406.
  20. Niu Z., Li X., Gao Y et al. Evaluation of Immunogenicity and Clinical Protection of SARS-CoV-2 S1 and N Antigens in Syrian Golden Hamster. Vaccines (Basel). 2022; 10(12):1996. doi: 10.3390/vaccines10121996.
  21. Kandeel M., Yamamoto M., Tani H. et al. Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit. Biomol Ther (Seoul). 2021; 29(3):282-289. doi: 10.4062/biomolther.2020.201.
  22. Khairkhah N., Bolhassani A., Agi E. et al. Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen. PLoS One. 2022; 17(6):e0268251. doi: 10.1371/journal.pone.0268251.
  23. Khadzhieva M.B., Kalinina E.V., Larin S.S. et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel). 2021; 11(8):1486. doi: 10.3390/diagnostics11081486.
  24. Lim K.H., Wang L., Eunice D. et al. TLR4 sensitizes plasmacytoid dendritic cells for antiviral response against SARS-CoV-2 coronavirus. J. Leukoc. Biol. 2023; Sep 25:qiad111. doi: 10.1093/jleuko/qiad111.
  25. Zhu Q., Xu Y., Wang T., Xie F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front Immunol. 2022; 13:1053437. doi: 10.3389/fimmu.2022.1053437.
  26. Brown B., Ojha V., Fricke I. et al. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel). 2023; 11(2):408. doi: 10.3390/vaccines11020408.
  27. Petrone L., Sette A., de Vries R.D., Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens. 2023; 12(7):862. doi: 10.3390/pathogens12070862.
  28. Liatsos G.D. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J. Gastroenterol. 2023; 29(16):2397-2432. doi: 10.3748/wjg.v29.i16.2397.
  29. Yuan C., Ma Z., Xie J. et al. The role of cell death in SARS-CoV-2 infection. Signal Transduct. Target Ther. 2023; 8(1):357. doi: 10.1038/s41392-023-01580-8.
  30. Frank M.G., Fleshner M., Maier S.F. Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19. Brain Behav. Immun. 2023; 111:259-269. doi: 10.1016/j.bbi.2023.04.009.
  31. Frank M.G., Nguyen K.H., Ball J.B. et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav. Immun. 2022; 100:267-277. doi: 10.1016/j.bbi.2021.12.007.
  32. Gu W., Gan H., Ma Y. et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity. Virol. J. 2022; 19(1):49. doi: 10.1186/s12985-022-01783-5.
  33. Wei W.C., Tsai K.C., Liaw C.C. et al. NRICM101 ameliorates SARS-CoV-2-S1-induced pulmonary injury in K18-hACE2 mice model. Front. Pharmacol. 2023; 14:1125414. doi: 10.3389/fphar.2023.1125414.
  34. Борисов А.Г., Савченко А.А., Кудрявцев И.В. Особенности иммунного реагирования при вирусных инфекциях. Инфекция и иммунитет. 2015; 5(2):148-156. http://dx.doi.org/10.15789/2220-7619-2015-2-148-156.
  35. Борисов А.Г., Савченко А.А., Тихонова Е.П. Современные методы лечения вирусного гепатита C. Красноярск: Версона, 2017. 74 с. http://agborisov.com/knigi/Sovremennye%20metody%20lecheniya%20virusnogo%20gepatita%20s.pdf.
  36. Козлов В.А., Тихонова Е.П., Савченко А.А. и др. Клиническая имунология. Практическое пособие для инфекционистов.
  37. Филатов О.Ю., Назаров В.А. Образраспознающие рецепторы врожденного иммунитета и их роль в иммунотерапии (обзор). Патогенез. 2020; 18(4):4-15. https://doi.org/https://doi.org/10.25557/2310-0435.2020.04.4-15.
  38. Vanderbeke L., Van Mol P., Van Herck Y et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat. Commun. 2021; 12(1):4117. doi: 10.1038/s41467-021-24360-w.
  39. Wang T., Hu Y., Dusi S. et al. “Open Sesame” to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front. Immunol. 2023; 14:1130060. doi: 10.3389/fimmu.2023.1130060.
  40. Di Vito C., Calcaterra F., Coianiz N. et al. Natural Killer Cells in SARS-CoV-2: Pathophysiology and Therapeutic Implications. Front. Immunol. 2022; 13:888248. doi: 10.3389/fimmu.2022.888248.
  41. Su S., Chen R., Zhang S. et al. Immune system changes in those with hypertension when infected with SARS-CoV-2. Cell Immunol. 2022; 378:104562. doi: 10.1016/j.cellimm.2022.104562.
  42. Liapis I., Baritaki S. COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment. Cancers (Basel). 2022; 14(17):4330. doi: 10.3390/cancers14174330.
  43. Wang J., Li D., Tang B. et al. The clinical and immunological characteristics of COVID-19 patients with delayed SARS-CoV-2 virus clearance. Immun. Inflamm. Dis. 2023; 11(9):e999. doi: 10.1002/iid3.999.
  44. Tarique M., Suhail M., Naz H. et al. Where do T cell subsets stand in SARS-CoV-2 infection: an update. Front. Cell. Infect. Microbiol. 2022; 12:964265. doi: 10.3389/fcimb.2022.964265.
  45. Wang Y., Gao T., Li W. et al. Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies. Cell. Biosci. 2023; 13(1):160. doi: 10.1186/s13578-023-01099-z.
  46. Rotulo G.A., Ceglie G., Candino A. et al. The Clinical Course of SARS-CoV-2 Infection in Patients With Autoimmune Neutropenia: A Retrospective Case Series Study. Pediatr. Infect. Dis. J. 2023; Sep 22. doi: 10.1097/INF.0000000000004093.
  47. Weissert R. Nervous system-related tropism of SARS-CoV-2 and autoimmunity in COVID-19 infection. Eur. J. Immunol. 2023; Sep 21:e2250230. doi: 10.1002/eji.202250230.
  48. Mosavat A., Mirhosseini A., Shariati A. et al. SARS-CoV-2 infection and increasing autoimmune disorders among ICU-hospitalized COVID-19 patients. Int. J. Rheum. Dis. 2023; Aug 14. doi: 10.1111/1756-185X.14875.
  49. Rosazza C., Alagna L., Bandera A. et al. Severity of SARS-CoV-2 infection in a hospital population: a clinical comparison across age groups. Ital. J. Pediatr. 2023; 49(1):135. doi: 10.1186/s13052-023-01485-w.
  50. Sperotto F., Gutiérrez-Sacristán A., Makwana S. et al. Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortium. EClinicalMedicine. 2023; 64:102212. doi: 10.1016/j.eclinm.2023.102212.
  51. Augustin M., Stecher M., Wüstenberg H. et al. 15-month post-COVID syndrome in outpatients: Attributes, risk factors, outcomes, and vaccination status - longitudinal, observational, case-control study. Front. Immunol. 2023; 14:1226622. doi: 10.3389/fimmu.2023.1226622.
  52. Savchenko A.A., Kudryavtsev I.V., Isakov D.V. et al. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel). 2023; 16(4):537. doi: 10.3390/ph16040537.
  53. Froňková E., Klocperk A., Svatoň M. et al. The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome. PLoS One. 2014; 9(12):e114514. doi: 10.1371/journal.pone.0114514.
  54. Khadzhieva M.B., Kalinina E.V., Larin S.S. et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel). 2021; 11(8):1486. doi: 10.3390/diagnostics11081486.
  55. Savchenko A.A., Tikhonova E., Kudryavtsev I. et al. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022; 14(3):646. doi: 10.3390/v14030646.
  56. Korsunskiy I., Blyuss O., Gordukova M. et al. TREC and KREC Levels as a Predictors of Lymphocyte Subpopulations Measured by Flow Cytometry. Front. Physiol. 2019; 1877. doi: 10.3389/fphys.2018.01877.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Elistratova T.A., Tikhonova E.P., Savchenko A.A., Borisov A.G.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies