Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.

Texto integral

Acesso é fechado

Sobre autores

V. Savin

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children

Autor responsável pela correspondência
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041; Ushakovo, 238322

M. Keruchenko

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad

Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000

P. Ershov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041

P. Vorontsov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041

A. Ignatov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041

V. Rodionova

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041

Bibliografia

  1. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
  2. Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
  3. Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
  4. Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
  5. Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
  6. Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
  7. Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
  8. Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
  9. Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
  10. Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
  11. Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scanning electron microscope photographs of PVDF/PZT composites with PZT content of 0 (a), 5 (b), 10 (c), 20 (d), and 30% (d).

Baixar (1MB)
3. Fig. 2. X-ray diffraction patterns of PVDF/PZT composites.

Baixar (164KB)
4. Fig. 3. Graph of the dependence of transverse stress s in the composite on the relative elongation of the sample ε.

Baixar (182KB)
5. Fig. 4. Schematic representation of the setup for measuring the d33 constant using the quasi-static method.

Baixar (57KB)
6. Fig. 5. Graph of the dependence of the constant d33 on the percentage content of PZT particles in the composite.

Baixar (89KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024