Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Savin

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children

Хат алмасуға жауапты Автор.
Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041; Ushakovo, 238322

M. Keruchenko

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad

Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000

P. Ershov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041

P. Vorontsov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041

A. Ignatov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041

V. Rodionova

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Ресей, Kaliningrad, 236041

Әдебиет тізімі

  1. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
  2. Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
  3. Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
  4. Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
  5. Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
  6. Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
  7. Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
  8. Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
  9. Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
  10. Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
  11. Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scanning electron microscope photographs of PVDF/PZT composites with PZT content of 0 (a), 5 (b), 10 (c), 20 (d), and 30% (d).

Жүктеу (1MB)
3. Fig. 2. X-ray diffraction patterns of PVDF/PZT composites.

Жүктеу (164KB)
4. Fig. 3. Graph of the dependence of transverse stress s in the composite on the relative elongation of the sample ε.

Жүктеу (182KB)
5. Fig. 4. Schematic representation of the setup for measuring the d33 constant using the quasi-static method.

Жүктеу (57KB)
6. Fig. 5. Graph of the dependence of the constant d33 on the percentage content of PZT particles in the composite.

Жүктеу (89KB)

© Russian Academy of Sciences, 2024