Энергозависимое нефотохимическое тушение: PsbS, LhcSR и другие игроки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для растений, обладающих высокочувствительным к свету фотосинтетическим аппаратом, приспособленным к улавливанию энергии света даже при слабых световых потоках, чрезвычайно опасны быстрые и значительные возрастания этого потока. Для решения проблем, вызываемых избыточной энергией падающего света, растения выработали целый ряд защитных механизмов, среди которых чрезвычайно важную роль играет нефотохимическое тушение возбуждённых состояний хлорофилла. Под нефотохимическим тушением, как правило, понимают совокупность различных механизмов, приводящих к сокращению времени жизни возбуждённых состояний хлорофилла в фотосинтетической антенне и тем самым к снижению эффективного воздействия света на весь фотосинтетический аппарат. Наиболее быстродействующий механизм нефотохимического тушения – так называемое энергозависимое тушение, которое активируется образованием трансмембранного протонного потенциала на тилакоидной мембране. Основные молекулярные игроки в этом механизме – кислородсодержащие каротиноиды ксантофиллы и белки тилакоидной мембраны: компонент антенны, LhcSR, у водорослей и мхов и компонент фотосистемы 2, PsbS, у высших растений и эволюционно наиболее близких к ним групп водорослей. Данный обзор посвящён молекулярным механизмам энергозависимого нефотохимического тушения, причём основной акцент сделан на PsbS-зависимом тушении. Установление того факта, что PsbS не связывает пигменты, породило представление о косвенной PsbS-зависимой активации тушения, т.е. о генерации центров тушения в других компонентах фотосинтетической антенны. В качестве механизмов такой активации в настоящее время рассматриваются: влияние PsbS на константы кислотной диссоциации аминокислотных остатков взаимодействующих с ним белков главной и малых антенн фотосистемы 2; влияние на конформацию каротиноидов в антенных белках; наконец, обсуждается роль PsbS как «мембранной смазки», увеличивающей подвижность главных антенн, LHCII, и обеспечивающей им возможность миграции в тилакоидной мембране и агрегации с последующим переходом в затушенное состояние.

Полный текст

Доступ закрыт

Об авторах

В. В. Птушенко

Московский государственный университет имени М.В. Ломоносова; Институт биохимической физики имени Н.М. Эмануэля РАН

Автор, ответственный за переписку.
Email: ptush@belozersky.msu.ru

НИИ физико-химической биологии имени А.Н. Белозерского

Россия, 119992 Москва; 119334 Москва

А. П. Разживин

Московский государственный университет имени М.В. Ломоносова

Email: ptush@belozersky.msu.ru

НИИ физико-химической биологии имени А.Н. Белозерского

Россия, 119992 Москва

Список литературы

  1. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, in Methods in Enzymology, Elsevier, p. 350-382, https://doi.org/10.1016/0076-6879(87)48036-1.
  2. Dengel, S., Grace, J., and MacArthur, A. (2015) Transmissivity of solar radiation within a Picea sitchensis stand under various sky conditions, Biogeosciences, 12, 4195-4207, https://doi.org/10.5194/bg-12-4195-2015.
  3. Краснова Е. Д., Лобышев В. И., Лабунская Е. А., Воронов Д. А., Соколовская Ю. Г., Жильцова А. А., Пацаева С. В. (2024) Спектральный состав света в хемоклине стратифицированных водоемов, находящихся на разных стадиях изоляции от Белого моря, Оптика Атмосферы Океана, 37, 307-315, https://doi.org/10.15372/AOO20240407.
  4. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W. (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res., 113, 75-88, https://doi.org/10.1007/s11120-012-9761-6.
  5. Santabarbara, S., Agostini, A., Petrova, A. A., Bortolus, M., Casazza, A. P., and Carbonera, D. (2024) Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing, Photosynth. Res., 159, 133-152, https://doi.org/10.1007/s11120-023-01023-z.
  6. Dogra, V., and Kim, C. (2020) Singlet oxygen metabolism: from genesis to signaling, Front. Plant Sci., 10, 500205, https://doi.org/10.3389/fpls.2019.01640.
  7. Dmitrieva, V. A., Tyutereva, E. V., and Voitsekhovskaja, O. V. (2020) Singlet oxygen in plants: Generation, detection, and signaling roles, Int. J. Mol. Sci., 21, 3237, https://doi.org/10.3390/ijms21093237.
  8. Bornhütter, T., Pohl, J., Fischer, C., Saltsman, I., Mahammed, A., Gross, Z., and Röder, B. (2016) Development of singlet oxygen luminescence kinetics during the photodynamic inactivation of green algae, Molecules, 21, 485, https://doi.org/10.3390/molecules21040485.
  9. Telfer, A. (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene, Plant Cell Physiol., 55, 1216-1223, https://doi.org/10.1093/pcp/pcu040.
  10. Krieger-Liszkay, A., Fufezan, C., and Trebst, A. (2008) Singlet oxygen production in photosystem II and related protection mechanism, Photosynth. Res., 98, 551-564, https://doi.org/10.1007/s11120-008-9349-3.
  11. Ledford, H. K., and Niyogi, K. K. (2005) Singlet oxygen and photo-oxidative stress management in plants and algae, Plant Cell Environ., 28, 1037-1045, https://doi.org/10.1111/j.1365-3040.2005.01374.x.
  12. Krieger-Liszkay, A. (2005) Singlet oxygen production in photosynthesis, J. Exp. Botany, 56, 337-346, https://doi.org/10.1093/jxb/erh237.
  13. Lokstein, H., and Grimm, B. (2007) Chlorophyll-binding proteins, eLS, https://doi.org/10.1002/9780470015902.a0020085.
  14. Caffarri, S., Tibiletti, T., C Jennings, R., and Santabarbara, S. (2014) A comparison between plant photosystem I and photosystem II architecture and functioning, Curr. Protein Peptide Sci., 15, 296-331, https://doi.org/10.2174/1389203715666140327102218.
  15. Wang, W., and Shen, J.-R. (2021) Structure, organization and function of light-harvesting complexes associated with photosystem II, in Photosynthesis: Molecular Approaches to Solar Energy Conversion, Springer, pp. 163-194, https://doi.org/10.1007/978-3-030-67407-6_6.
  16. Sheng, X., Watanabe, A., Li, A., Kim, E., Song, C., Murata, K., Song, D., Minagawa, J., and Liu, Z. (2019) Structural insight into light harvesting for photosystem II in green algae, Nat. Plants, 5, 1320-1330, https://doi.org/10.1038/s41477-019-0543-4.
  17. Su, X., Ma, J., Wei, X., Cao, P., Zhu, D., Chang, W., Liu, Z., Zhang, X., and Li, M. (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex, Science, 357, 815-820, https://doi.org/10.1126/science.aan0327.
  18. Boekema, E. J., van Roon, H., Calkoen, F., Bassi, R., and Dekker, J. P. (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes, Biochemistry, 38, 2233-2239, https://doi.org/10.1021/bi9827161.
  19. Tokutsu, R., Kato, N., Bui, K. H., Ishikawa, T., and Minagawa, J. (2012) Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii, J. Biol. Chem., 287, 31574-31581, https://doi.org/10.1074/jbc.M111.331991.
  20. Watanabe, A., and Minagawa, J. (2020) Structural characterization of the photosystems in the green alga Chlorella sorokiniana, Planta, 252, 79, https://doi.org/10.1007/s00425-020-03487-y.
  21. Van Bezouwen, L. S., Caffarri, S., Kale, R. S., Kouřil, R., Thunnissen, A.-M. W., Oostergetel, G. T., and Boekema, E. J. (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex, Nat. Plants, 3, 17080, https://doi.org/10.1038/nplants.2017.80.
  22. Valencia, W. M., and Pandit, A. (2024) Photosystem II subunit S (PsbS): a nano regulator of plant photosynthesis, J. Mol. Biol., 436, 168407, https://doi.org/10.1016/j.jmb.2023.168407.
  23. Pinnola, A., Cazzaniga, S., Alboresi, A., Nevo, R., Levin-Zaidman, S., Reich, Z., and Bassi, R. (2015) Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens, Plant Cell, 27, 3213-3227, https://doi.org/10.1105/tpc.15.00443.
  24. Suga, M., and Shen, J.-R. (2020) Structural variations of photosystem I-antenna supercomplex in response to adaptations to different light environments, Curr. Opin. Struct. Biol., 63, 10-17, https://doi.org/10.1016/j.sbi.2020.02.005.
  25. Caspy, I., Borovikova-Sheinker, A., Klaiman, D., Shkolnisky, Y., and Nelson, N. (2020) The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin, Nat. Plants, 6, 1300-1305, https://doi.org/10.1038/s41477-020-00779-9.
  26. Shen, L., Tang, K., Wang, W., Wang, C., Wu, H., Mao, Z., An, S., Chang, S., Kuang, T., and Shen, J.-R. (2022) Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare, Nature, 601, 649-654, https://doi.org/10.1038/s41586-021-04277-6.
  27. Fadeeva, M., Klaiman, D., and Nelson, N. (2023) Cryo-EM structure of the Photosystem I – LHCI supercomplex from Coelastrella sp., in press.
  28. Huang, Z., Shen, L., Wang, W., Mao, Z., Yi, X., Kuang, T., Shen, J.-R., Zhang, X., and Han, G. (2021) Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2, Nat. Commun., 12, 1100, https://doi.org/10.1038/s41467-021-21362-6.
  29. Girolomoni, L., Cazzaniga, S., Pinnola, A., Perozeni, F., Ballottari, M., and Bassi, R. (2019) LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 116, 4212-4217, https://doi.org/10.1073/pnas.1809812116.
  30. Pinnola, A. (2019) The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution, J. Exp. Botany, 70, 5527-5535, https://doi.org/10.1093/jxb/erz317.
  31. Schreiber, U., and Klughammer, C. (2021) Evidence for variable chlorophyll fluorescence of photosystem I in vivo, Photosynth. Res., 149, 213-231, https://doi.org/10.1007/s11120-020-00814-y.
  32. Schreiber, U. (2023) Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo, Photosynth. Res., 155, 247-270, https://doi.org/10.1007/s11120-022-00994-9.
  33. Ritchie, R. (2010) Modelling photosynthetic photon flux density and maximum potential gross photosynthesis, Photosynthetica, 48, 596-609, https://doi.org/10.1007/s11099-010-0077-5.
  34. Niyogi, K. K., Björkman, O., and Grossman, A. R. (1997) The roles of specific xanthophylls in photoprotection, Proc. Natl. Acad. Sci. USA, 94, 14162-14167, https://doi.org/10.1073/pnas.94.25.14162.
  35. Niyogi, K. K., Shih, C., Soon Chow, W., Pogson, B. J., DellaPenna, D., and Björkman, O. (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis, Photosynth. Res., 67, 139-145, https://doi.org/10.1023/A:1010661102365.
  36. Niedzwiedzki, D. M., Sullivan, J. O., Polívka, T., Birge, R. R., and Frank, H. A. (2006) Femtosecond time-resolved transient absorption spectroscopy of xanthophylls, J. Phys. Chem. B, 110, 22872-22885, https://doi.org/10.1021/jp0622738.
  37. Lee, T.-Y., Lam, L., Patel-Tupper, D., Roy, P. P., Ma, S. A., Lucas-DeMott, A., Karavolias, N. G., Niyogi, K. K., and Fleming, G. R. (2023) Chlorophyll to zeaxanthin energy transfer in non-photochemical quenching: an exciton annihilation-free transient absorption study, bioRxiv, https://doi.org/10.1101/2023.10.11.561813.
  38. Frank, H. A., Cua, A., Chynwat, V., Young, A., Gosztola, D., and Wasielewski, M. R. (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis, Photosynth. Res., 41, 389-395, https://doi.org/10.1007/BF02183041.
  39. Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin, Biochim. Biophys. Acta, 1020, 1-24, https://doi.org/10.1016/0005-2728(90)90088-L.
  40. Сапожников Д., Красовская Т., Маевская А. (1957) Изменение соотношения основных каротиноидов пластид зеленых листьев при действии света, Докл. АН СССР, 113, 465.
  41. Polívka, T., Zigmantas, D., Sundström, V., Formaggio, E., Cinque, G., and Bassi, R. (2002) Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II, Biochemistry, 41, 439-450, https://doi.org/10.1021/bi011589x.
  42. Son, M., Pinnola, A., and Schlau-Cohen, G. S. (2020) Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment, Biochim. Biophys. Acta, 1861, 148115, https://doi.org/10.1016/j.bbabio.2019.148115.
  43. Balevičius, V., and Duffy, C. D. (2020) Excitation quenching in chlorophyll–carotenoid antenna systems:‘coherent’or ‘incoherent’, Photosynth. Res., 144, 301-315, https://doi.org/10.1007/s11120-020-00737-8.
  44. Holt, N. E., Zigmantas, D., Valkunas, L., Li, X.-P., Niyogi, K. K., and Fleming, G. R. (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting, Science, 307, 433-436, https://doi.org/10.1126/science.1105833.
  45. Ostroumov, E. E., Götze, J. P., Reus, M., Lambrev, P. H., and Holzwarth, A. R. (2020) Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II, Photosynth. Res., 144, 171-193, https://doi.org/10.1007/s11120-020-00745-8.
  46. Ahn, T. K., Avenson, T. J., Ballottari, M., Cheng, Y.-C., Niyogi, K. K., Bassi, R., and Fleming, G. R. (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein, Science, 320, 794-797, https://doi.org/10.1126/science.1154800.
  47. Pinnola, A., Staleva-Musto, H., Capaldi, S., Ballottari, M., Bassi, R., and Polívka, T. (2016) Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens, Biochim. Biophys. Acta, 1857, 1870-1878, https://doi.org/10.1016/j.bbabio.2016.09.001.
  48. Polívka, T., Herek, J. L., Zigmantas, D., Åkerlund, H.-E., and Sundström, V. (1999) Direct observation of the (forbidden) S1 state in carotenoids, Proc. Natl. Acad. Sci. USA, 96, 4914-4917, https://doi.org/10.1073/pnas.96.9.4914.
  49. Ruban, A. V., Johnson, M. P., and Duffy, C. D. (2012) The photoprotective molecular switch in the photosystem II antenna, Biochim. Biophys. Acta, 1817, 167-181, https://doi.org/10.1016/j.bbabio.2011.04.007.
  50. Li, X.-P., BjoÈrkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., and Niyogi, K. K. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting, Nature, 403, 391-395, https://doi.org/10.1038/35000131.
  51. Ljungberg, U., Åkerlund, H. E., and Andersson, B. (1986) Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2, Eur. J. Biochem., 158, 477-482, https://doi.org/10.1111/j.1432-1033.1986.tb09779.x.
  52. Wedell, N., Klein, R., Ljungberg, U., Andersson, B., and Herrmann, R. (1992) The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II, FEBS Lett., 314, 61-66, https://doi.org/10.1016/0014-5793(92)81462-U.
  53. Kim, S., Sandusky, P., Bowlby, N. R., Aebersold, R., Green, B. R., Vlahaskis, S., Yocum, C. F., and Pichersky, E. (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II, FEBS Lett., 314, 67-71, https://doi.org/10.1016/0014-5793(92)81463-V.
  54. Funk, C., Schroeder, W. P., Napiwotzki, A., Tjus, S. E., Renger, G., and Andersson, B. (1995) The PSII-S protein of higher plants: a new type of pigment-binding protein, Biochemistry, 34, 11133-11141, https://doi.org/10.1021/bi00035a019.
  55. Külheim, C., and Jansson, S. (2005). What leads to reduced fitness in non-photochemical quenching mutants? Phys. Plant., 125, 202-211, https://doi.org/10.1111/j.1399-3054.2005.00547.x.
  56. Crouchman, S., Ruban, A., and Horton, P. (2006). PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin, FEBS Lett., 580, 2053-2058, https://doi.org/10.1016/j.febslet.2006.03.005.
  57. Bonente, G., Passarini, F., Cazzaniga, S., Mancone, C., Buia, M. C., Tripodi, M., Bassi, R., and Caffarri, S. (2008) The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching, Photochem. Photobiol., 84, 1359-1370, https://doi.org/10.1111/j.1751-1097.2008.00456.x.
  58. Gagné, G., and Guertin, M. (1992) The early genetic response to light in the green unicellular alga Chlamydomonas eugametos grown under light/dark cycles involves genes that represent direct responses to light and photosynthesis, Plant Mol. Biol., 18, 429-445, https://doi.org/10.1007/BF00040659.
  59. Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., Hippler, M., and Niyogi, K. K. (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis, Nature, 462, 518-521, https://doi.org/10.1038/nature08587.
  60. Liguori, N., Novoderezhkin, V., Roy, L. M., van Grondelle, R., and Croce, R. (2016). Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii, Biochim. Biophys. Acta, 1857, 1514-1523, https://doi.org/10.1016/j.bbabio.2016.04.285.
  61. Park, S., Steen, C. J., Lyska, D., Fischer, A. L., Endelman, B., Iwai, M., Niyogi, K. K., and Fleming, G. R. (2019) Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis, Proc. Natl. Acad. Sci. USA, 116, 3385-3390, https://doi.org/10.1073/pnas.1819011116.
  62. Fan, M., Li, M., Liu, Z., Cao, P., Pan, X., Zhang, H., Zhao, X., Zhang, J., and Chang, W. (2015) Crystal structures of the PsbS protein essential for photoprotection in plants, Nat. Struct. Mol. Biol., 22, 729-735, https://doi.org/10.1038/nsmb.3068.
  63. Ruan, M., Li, H., Zhang, Y., Zhao, R., Zhang, J., Wang, Y., Gao, J., Wang, Z., Wang, Y., and Sun, D. (2023) Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation, Nat. Plants, 9, 1547-1557, https://doi.org/10.1038/s41477-023-01500-2.
  64. Aspinall-O’Dea, M., Wentworth, M., Pascal, A., Robert, B., Ruban, A., and Horton, P. (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants, Proc. Natl. Acad. Sci. USA, 99, 16331-16335, https://doi.org/10.1073/pnas.252500999.
  65. Dominici, P., Caffarri, S., Armenante, F., Ceoldo, S., Crimi, M., and Bassi, R. (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant, J. Biol. Chem., 277, 22750-22758, https://doi.org/10.1074/jbc.M200604200.
  66. Ptushenko, V. V., Knorre, D. D., and Glagoleva, E. S. (2023) The photoprotective protein PsbS from green microalga lobosphaera incisa: the amino acid sequence, 3D structure and probable pH-sensitive residues, Int. J. Mol. Sci., 24, 15060, https://doi.org/10.3390/ijms242015060.
  67. Nicol, L., Nawrocki, W. J., and Croce, R. (2019) Disentangling the sites of non-photochemical quenching in vascular plants, Nat. Plants, 5, 1177-1183, https://doi.org/10.1038/s41477-019-0526-5.
  68. Saccon, F., Giovagnetti, V., Shukla, M. K., and Ruban, A. V. (2020) Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes, J. Exp. botany., 71, 3626-3637, https://doi.org/10.1093/jxb/eraa126.
  69. Ruban, A. V., and Wilson, S. (2021) The mechanism of non-photochemical quenching in plants: localization and driving forces, Plant Cell Physiol., 62, 1063-1072, https://doi.org/10.1093/pcp/pcaa155.
  70. Santabarbara, S., Horton, P., and Ruban, A. V. (2009) Comparison of the thermodynamic landscapes of unfolding and formation of the energy dissipative state in the isolated light harvesting complex II, Biophys. J., 97, 1188-1197, https://doi.org/10.1016/j.bpj.2009.06.005.
  71. Navakoudis, E., Stergiannakos, T., and Daskalakis, V. (2023) A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein, Photosynth. Res., 156, 163-177, https://doi.org/10.1007/s11120-022-00935-6.
  72. Tietz, S., Leuenberger, M., Höhner, R., Olson, A. H., Fleming, G. R., and Kirchhoff, H. (2020) A proteoliposome-based system reveals how lipids control photosynthetic light harvesting, J. Biol. Chem., 295, 1857-1866, https://doi.org/10.1074/jbc.RA119.011707.
  73. Azadi-Chegeni, F., Thallmair, S., Ward, M. E., Perin, G., Marrink, S. J., Baldus, M., Morosinotto, T., and Pandit, A. (2022) Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes, Biophys. J., 121, 396-409, https://doi.org/10.1016/j.bpj.2021.12.039.
  74. Daskalakis, V., Papadatos, S., and Kleinekathoefer, U. (2019) Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants, Biochim. Biophys. Acta, 1861, 183059, https://doi.org/10.1016/j.bbamem.2019.183059.
  75. Ruban, A., Rees, D., Pascal, A., and Horton, P. (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids, Biochim. Biophys. Acta, 1102, 39-44, https://doi.org/10.1016/0005-2728(92)90062-7.
  76. Tutkus, M., Chmeliov, J., Trinkunas, G., Akhtar, P., Lambrev, P. H., and Valkunas, L. (2021) Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy, J. Photochem. Photobiol. B Biol., 218, 112174, https://doi.org/10.1016/j.jphotobiol.2021.112174.
  77. Shukla, M. K., Watanabe, A., Wilson, S., Giovagnetti, V., Moustafa, E. I., Minagawa, J., and Ruban, A. V. (2020) A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching, J. Biol. Chem., 295, 17816-17826, https://doi.org/10.1074/ jbc.RA120.016181.
  78. Li, X.-P., Müller-Moulé, P., Gilmore, A. M., and Niyogi, K. K. (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition, Proc. Natl. Acad. Sci. USA, 99, 15222-15227, https://doi.org/10.1073/pnas.232447699.
  79. Johnson, M. P., Goral, T. K., Duffy, C. D., Brain, A. P., Mullineaux, C. W., and Ruban, A. V. (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts, Plant Cell, 23, 1468-1479, https://doi.org/10.1105/tpc.110.081646.
  80. Johnson, M. P., and Ruban, A. V. (2011) Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH, J. Biol. Chem., 286, 19973-19981, https://doi.org/10.1074/jbc.M111.237255.
  81. Goral, T. K., Johnson, M. P., Duffy, C. D., Brain, A. P., Ruban, A. V., and Mullineaux, C. W. (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis, Plant J., 69, 289-301, https://doi.org/10.1111/j.1365-313X.2011.04790.x.
  82. Daskalakis, V., Maity, S., Hart, C. L., Stergiannakos, T., Duffy, C. D., and Kleinekathöfer, U. (2019) Structural basis for allosteric regulation in the major antenna trimer of photosystem II, J. Phys. Chem. B, 123, 9609-9615, https://doi.org/10.1021/acs.jpcb.9b09767.
  83. Daskalakis, V., Papadatos, S., and Stergiannakos, T. (2020) The conformational phase space of the photoprotective switch in the major light harvesting complex II, Chem. Commun., 56, 11215-11218, https://doi.org/10.1039/D0CC04486E.
  84. Li, H., Wang, Y., Ye, M., Li, S., Li, D., Ren, H., Wang, M., Du, L., Li, H., and Veglia, G. (2020) Dynamical and allosteric regulation of photoprotection in light harvesting complex II, Sci. China Chem., 63, 1121-1133, https://doi.org/10.1007/s11426-020-9771-2.
  85. Papadatos, S., Charalambous, A. C., and Daskalakis, V. (2017) A pathway for protective quenching in antenna proteins of Photosystem II, Sci. Rep., 7, 2523, https://doi.org/10.1038/s41598-017-02892-w.
  86. Thallmair, S., Vainikka, P. A., and Marrink, S. J. (2019) Lipid fingerprints and cofactor dynamics of light-harvesting complex II in different membranes, Biophys. J., 116, 1446-1455, https://doi.org/10.1016/j.bpj. 2019.03.009.
  87. Daskalakis, V., and Papadatos, S. (2017) The photosystem II subunit S under stress, Biophys. J., 113, 2364-2372, https://doi.org/10.1016/j.bpj.2017.09.034.
  88. Liguori, N., Campos, S. R., Baptista, A. N. M., and Croce, R. (2019) Molecular anatomy of plant photoprotective switches: the sensitivity of PsbS to the environment, residue by residue, J. Phys. Chem. Lett., 10, 1737-1742, https://doi.org/10.1021/acs.jpclett.9b00437.
  89. Dall’Osto, L., Cazzaniga, S., Bressan, M., Paleček, D., Židek, K., Niyogi, K. K., Fleming, G. R., Zigmantas, D., and Bassi, R. (2017) Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes, Nat. Plants, 3, 17033, https://doi.org/10.1038/nplants.2017.33.
  90. Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G., and Ruban, A. V. (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching, Nat. Plants, 3, 16225, https://doi.org/10.1038/nplants.2016.225.
  91. Correa-Galvis, V., Poschmann, G., Melzer, M., Stühler, K., and Jahns, P. (2016) PsbS interactions involved in the activation of energy dissipation in Arabidopsis, Nat. Plants, 2, 15225, https://doi.org/10.1038/nplants.2015.225.
  92. Daskalakis, V. (2018) Protein–protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution, Phys. Chem. Chem. Phys., 20, 11843-11855, https://doi.org/10.1039/C8CP01226A.
  93. Liguori, N., Xu, P., Van Stokkum, I. H., Van Oort, B., Lu, Y., Karcher, D., Bock, R., and Croce, R. (2017) Different carotenoid conformations have distinct functions in light-harvesting regulation in plants, Nat. Commun., 8, 1994, https://doi.org/10.1038/s41467-017-02239-z.
  94. Bergantino, E., Segalla, A., Brunetta, A., Teardo, E., Rigoni, F., Giacometti, G. M., and Szabò, I. (2003) Light-and pH-dependent structural changes in the PsbS subunit of photosystem II, Proc. Natl. Acad. Sci. USA, 100, 15265-15270, https://doi.org/10.1073/pnas.2533072100.
  95. Krishnan-Schmieden, M., Konold, P. E., Kennis, J. T., and Pandit, A. (2021) The molecular pH-response mechanism of the plant light-stress sensor PsbS, Nat. Commun., 12, 2291, https://doi.org/10.1038/s41467-021-22530-4.
  96. Ambrose, W. P., Goodwin, P. M., Martin, J. C., and Keller, R. A. (1994) Single molecule detection and photochemistry on a surface using near-field optical excitation, Phys. Rev. Lett., 72, 160, https://doi.org/10.1103/PhysRevLett.72.160.
  97. Basché, T., Kummer, S., and Bräuchle, C. (1995) Direct spectroscopic observation of quantum jumps of a single molecule, Nature, 373, 132-134, https://doi.org/10.1038/373132a0.
  98. Krüger, T. P., Ilioaia, C., Valkunas, L., and van Grondelle, R. (2011) Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment, J. Phys. Chem. B, 115, 5083-5095, https://doi.org/10.1021/jp109833x.
  99. Bopp, M. A., Jia, Y., Li, L., Cogdell, R. J., and Hochstrasser, R. M. (1997) Fluorescence and photobleaching dynamics of single light-harvesting complexes, Proc. Natl. Acad. Sci. USA, 94, 10630-10635, https://doi.org/10.1073/pnas.94.20.10630.
  100. Ying, L., and Xie, X. S. (1998) Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers, J. Phys. Chem. B, 102, 10399-10409, https://doi.org/10.1021/jp983227d.
  101. Hofkens, J., Schroeyers, W., Loos, D., Cotlet, M., Köhn, F., Vosch, T., Maus, M., Herrmann, A., Müllen, K., and Gensch, T. (2001) Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system, Spectrochim. Acta A Mol. Biomol. Spectrosc., 57, 2093-2107, https://doi.org/10.1016/S1386-1425(01)00499-1.
  102. Gerotto, C., and Morosinotto, T. (2013) Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae, Physiol. Plant., 149, 583-598, https://doi.org/10.1111/ppl.12070.
  103. Giovagnetti, V., and Ruban, A. V. (2018) The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes, Biochem. Soc. Transact., 46, 1263-1277, https://doi.org/10.1042/BST20170304.
  104. Tibiletti, T., Auroy, P., Peltier, G., and Caffarri, S. (2016) Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light, Plant Physiol., 171, 2717-2730, https://doi.org/10.1104/pp.16.00572.
  105. Correa-Galvis, V., Redekop, P., Guan, K., Griess, A., Truong, T. B., Wakao, S., Niyogi, K. K., and Jahns, P. (2016) Photosystem II subunit PsbS is involved in the induction of LHCSR protein-dependent energy dissipation in Chlamydomonas reinhardtii, J. Biol. Chem., 291, 17478-17487, https://doi.org/10.1074/jbc.M116.737312.
  106. Strenkert, D., Schmollinger, S., Gallaher, S. D., Salomé, P. A., Purvine, S. O., Nicora, C. D., Mettler-Altmann, T., Soubeyrand, E., Weber, A. P., and Lipton, M. S. (2019) Multiomics resolution of molecular events during a day in the life of Chlamydomonas, Proc. Natl. Acad. Sci. USA, 116, 2374-2383, https://doi.org/10.1073/pnas.1815238116.
  107. Zhao, X., Tang, X., Hu, S., Zhong, Y., Qu, T., and Wang, Y. (2019) Photosynthetic response of floating Ulva prolifera to diurnal changes of in-situ environments on the sea surface, J. Oceanol. Limnol., 37, 589-599, https://doi.org/10.1007/s00343-019-8081-5.
  108. Ptushenko, V. V., Bondarenko, G. N., Vinogradova, E. N., Glagoleva, E. S., Karpova, O. V., Ptushenko, O. S., Shibzukhova, K. A., Solovchenko, A. E., and Lobakova, E. S. (2022) Chilling upregulates expression of the PsbS and LhcSR genes in the chloroplasts of the green microalga Lobosphaera incisa IPPAS C-2047, Biochemistry (Moscow), 87, 1699-1706, https://doi.org/10.1134/S0006297922120240.
  109. Li, Q., Zhang, L., Pang, T., and Liu, J. (2019) Comparative transcriptome profiling of Kappaphycus alvarezii (Rhodophyta, Gigartinales) in response to two extreme temperature treatments: an RNA-seq-based resource for photosynthesis research, Eur. J. Phycol., 54, 162-174, https://doi.org/10.1080/09670262.2018.1536283.
  110. Larkum, A. W. (2020) Light-harvesting in cyanobacteria and eukaryotic algae: an overview, in Photosynthesis in Algae: Biochemical and Physiological Mechanisms, pp. 207-260, https://doi.org/10.1007/978-3-030-33397-3_10.
  111. Slonimskiy, Y. B., Zupnik, A. O., Varfolomeeva, L. A., Boyko, K. M., Maksimov, E. G., and Sluchanko, N. N. (2022) A primordial orange carotenoid protein: structure, photoswitching activity and evolutionary aspects, Int. J. Biol. Macromol., 222, 167-180, https://doi.org/10.1016/j.ijbiomac.2022.09.131.
  112. Wilson, A., Punginelli, C., Gall, A., Bonetti, C., Alexandre, M., Routaboul, J.-M., Kerfeld, C. A., Van Grondelle, R., Robert, B., and Kennis, J. T. (2008) A photoactive carotenoid protein acting as light intensity sensor, Proc. Natl. Acad. Sci. USA, 105, 12075-12080, https://doi.org/10.1073/pnas.0804636105.
  113. Kirilovsky, D. (2020) Modulating energy transfer from phycobilisomes to photosystems: state transitions and OCP-related non-photochemical quenching, in Photosynthesis in Algae: Biochemical and Physiological Mechanisms, 367-396, https://doi.org/10.1007/978-3-030-33397-3_14.
  114. Delphin, E., Duval, J.-C., Etienne, A.-L., and Kirilovsky, D. (1996) State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae, Biochemistry, 35, 9435-9445, https://doi.org/10.1021/bi960528+.
  115. Delphin, E., Duval, J.-C., Etienne, A.-L., and Kirilovsky, D. (1998) ΔpH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae, Plant Physiol., 118, 103-113, https://doi.org/10.1104/pp.118.1.103.
  116. Cazzaniga, S., Kim, M., Bellamoli, F., Jeong, J., Lee, S., Perozeni, F., Pompa, A., Jin, E., and Ballottari, M. (2020) Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii, Plant Cell Environ., 43, 496-509, https://doi.org/10.1111/pce.13680.
  117. Teardo, E., de Laureto, P. P., Bergantino, E., Dalla Vecchia, F., Rigoni, F., Szabò, I., and Giacometti, G. M. (2007) Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids, Biochim. Biophys. Acta, 1767, 703-711, https://doi.org/10.1016/j.bbabio.2006.12.002.
  118. Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Müller, M., Holzwarth, A. R., and Jahns, P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis, Biochim. Biophys. Acta, 1797, 466-475, https://doi.org/10.1016/j.bbabio.2010.01.001.
  119. Yamamoto, H. Y. (1979) Biochemistry of the violaxanthin cycle in higher plants, in Carotenoids–5, Elsevier, pp. 639-648, https://doi.org/10.1016/B978-0-08-022359-9.50017-5.
  120. Subramanyam, R., and Madireddi, S. K. (2021) Perception of state transition in photosynthetic organisms, in Photosynthesis: Molecular Approaches to Solar Energy Conversion, Springer, pp. 303-320, https://doi.org/10.1007/978-3-030-67407-6_11, https://doi.org/10.1007/978-3-030-67407-6_11.
  121. Vetoshkina, D., and Borisova-Mubarakshina, M. (2023) Reversible protein phosphorylation in higher plants: focus on state transitions, Biophys. Rev., 15, 1079-1093, https://doi.org/10.1007/s12551-023-01116-y.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема, иллюстрирующая пути дезактивации возбуждённого состояния Хл антенны. Показаны пути дезактивации и их эффективные константы для всего пула молекул Хл антенны: через фотохимическую реакцию (kP, дугообразная зелёная стрелка), безызлучательную тепловую диссипацию (kD, чёрная волнистая стрелка) и флуоресценцию (kF, вертикальная красная стрелка). Синей вертикальной стрелкой, направленной вверх, показан переход Хл в возбуждённое состояние при поглощении кванта света

Скачать (87KB)
3. Рис. 2. Схематичное изображение суперкомплекса ФС2, C2S2M2L2, включающего димер комплексов ФС2 (обозначаемых C) и по паре прочно (S), умеренно (M) и слабо связанных (L) главных антенных комплексов LHCII.

Скачать (884KB)
4. Рис. 3. Схематичное изображение суперкомплекса ФС1 (в литературе обозначаемого как PSI–LHCI–LHCII), включающего комплекс ФС1, несколько антенных комплексов LHCI (продукты генов lhca1–lhca9) и два главных антенных комплекса ФС2, LHCII; вид в плоскости мембраны. В зависимости от вида и условий освещения суперкомплексы ФС1 могут содержать меньшее число антенн. За основу схемы взяты данные криоэлектронной микроскопии о структуре суперкомплекса из C. reinhardtii (код pdb: 7D0J [28])

Скачать (904KB)
5. Рис. 4. Схема взаимодействия пигментов виолаксантинового цикла с Хл антенны в соответствии с моделью молекулярного переключения передач Frank et al. [38]. Дугообразные стрелки показывают перенос нейтрального возбуждения между молекулами пигментов, при котором возбуждённая молекула-донор переходит в основное состояние, а невозбуждённая молекула-акцептор – в возбуждённое. В соответствии с моделью перенос энергии между рассматриваемыми пигментами (Хл, Вио и Зеа) происходит преимущественно в направлении Вио → Хл → Зеа. Волнистой стрелкой показан безызлучательный и не сопровождающийся переносом энергии переход Зеа* в основное состояние (тепловая диссипация энергии возбуждения)

Скачать (106KB)
6. Рис. 5. Структура субъединицы S ФС2, PsbS (а), по данным рентгеноструктурного анализа (код pdb: 4RI2 [62]), и мономера комплекса главной антенны LHCII, Lhcb1 (б), по данным криоэлектронной микроскопии (код pdb: 8IX0 [63]); последовательность белков, составляющих LHCII, близка к последовательности LhcSR, для которого на сегодняшний день пока не получена экспериментальная трёхмерная структура. Спиральные участки (α и 310) показаны цилиндрами и подписаны для обоих белков (TM1–TM4 – трансмембранные спирали, H1–H3 – амфифильные спирали PsbS; у Lhcb1 их общепринятые обозначения A–C и E–D соответственно). Молекулы Хл, связанные с Lhcb1, выделены зелёным (Хл а) или бирюзовым цветом (Хл б; фитольные «хвосты» показаны тонкой линией), каротиноиды – жёлтым (лютеин), оранжевым (неоксантин) и красным (виолаксантин)

Скачать (808KB)
7. Рис. 6. Структура Lhcb1, по данным криоэлектронной микроскопии (код pdb: 8IX0 [63]); показан только кластер хлорофиллов Хл а 610, -611, -612 и лютеин (в сайте связывания Lut1), предположительно, образующие центр тушения. Цветом показаны боковые цепи Glu-94, Lys-99 и Gln-103, предположительно, связанные с переходом LHCII в затушенное состояние. Остальные пояснения см. в подписи к рис. 5

Скачать (314KB)
8. Рис. 7. Схематичное изображение основных представлений о механизме PsbS- (а) и LhcSR-зависимого тушения (б).

Скачать (862KB)

© Российская академия наук, 2025