Structural features of polylactide and natural rubber films produced by solution casting
- 作者: Tertyshnaya Y.V.1,2, Podzorova M.V.1,2, Karpova S.G.1, Krivandin A.V.1
-
隶属关系:
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
- Plekhanov Russian University of Economics
- 期: 卷 43, 编号 4 (2024)
- 页面: 110-118
- 栏目: Chemical physics of polymeric materials
- URL: https://cijournal.ru/0207-401X/article/view/674967
- DOI: https://doi.org/10.31857/S0207401X24040133
- EDN: https://elibrary.ru/VDLFDP
- ID: 674967
如何引用文章
详细
Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.
全文:

作者简介
Yu. Tertyshnaya
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics
编辑信件的主要联系方式.
Email: terj@rambler.ru
俄罗斯联邦, Moscow; Moscow
M. Podzorova
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: terj@rambler.ru
俄罗斯联邦, Moscow; Moscow
S. Karpova
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
Email: terj@rambler.ru
俄罗斯联邦, Moscow
A. Krivandin
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
Email: terj@rambler.ru
俄罗斯联邦, Moscow
参考
- Yu. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Russ. J. Phys. Chem. B 16 (1), 162 (2022). https://doi.org/10.1134/S1990793122010304
- S. Rogovina, L. Zhorina, A. Gatin, et al., Polym. 12, 1088 (2020). https://doi.org/10.3390/polym12051088
- I. A. Var’yan, N. N. Kolesnikova, A. A. Popov, Russ. J. Phys. Chem. B 15 (6), 1041 (2021). https://doi.org/10.1134/S1990793121060257
- C. Zhang, W. Wang, Y. Huang, et al., Mater. Design. 45, 198 (2013). https://doi.org/10.1016/j.matdes.2012.09.024
- W-L. Sia, W-Q. Yuana, Y-D. Lia, et al., Polym. Test. 65, 249 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.030
- S. Rogovina, K.V. Aleksanyan, L. V. Vladimirov, et al., Russ. J. Phys. Chem. B 13 (5), 812 (2019). https://doi.org/10.1134/S1990793119050099
- X. Lan, X. Li, Z. Liu, et al., J. Macromol. Sci., Pure Appl. Chem. 50, 861 (2013).
- Y. B. Tee, R. A. Talib, K. Abdan, et al., Agric. Agric. Sci. Proc. 2, 289 (2014). https://doi.org/10.1016/j.aaspro.2014.11.041
- N. F. Alias, H. Ismail, Polym.-Plast. Technol. Mater. 58, 1399 (2019). https://doi.org/10.1080/25740881.2018.1563118
- A. Ali Shah, F. Hasan, Z. Shah, et al., Int. Biodeterior. Biodegrad, 83, 145 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004
- B. Suksut, C. Deeprasertkul, J. Polym. Environ. 19, 288 (2010). https://doi.org/10.1007/s10924-010-0278-9
- S. Ishida, R. Nagasaki, K. Chino K., et al., J. Appl. Polym. Sci. 113, 558 (2009). https://doi.org/10.1002/app.30134
- N. Bitinis, R. Verdejo, P. Cassagnau, et al., Mater. Chem. Phys. 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
- D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
- A. A. Ol’hov, M. A. Gol’dshtrah, L. S. Shibryeva, et al., Chem. Sustainable Developm. 24 (5), 633 (2016).
- X. Zhou, J. C. Feng, J. J. Yi, et al., Mater. Design. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069
- R. Auras, B. Harte, S. Selke, Macromol. Biosci. 4, 835 (2004). https://doi.org/10.1002.MABI.200400043
- A. V. Krivandin, A. B. Solov’еva, N. N. Glagolev, et al., Polym. 44, 5789 (2003). https://doi.org/10.1016/S0032-3861(03)00588-3
- O. V. Kazarina, A. G. Morozova, I. L. Fedyshkin, Polym. Sci. 63 (2), 83 (2021). https://doi.org/10.1134/S1560090421020056
- Y. Tertyshnaya, S. Karpova, M. Moskovskiy M., et al., Polym. 13, 2232. (2021). https://doi.org/10.3390/polym13142232
- V. N. Kuleznev Mixtures of polymers, Moscow, Chemistry, 304 p. (1980)
- Yu. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, Russ. J. Phys. Chem. B. 15 (5), 854 (2021). https://doi.org/10.1134/S1990793121050092
- L. Zhang, G. Zhao, G. Wang, Polym. 13, 3280 (2021). https://doi.org/10.3390/polym13193280
- Yu. V. Tertyshnaya, A.V. Krivandin, O. V. Shatalova, Russ. J. Phys. Chem. B. 17 (1), 171 (2023). https://doi.org/10.1134/S1990793123010128
- Yu. V. Tertyshnaya, S.G. Karpova, O.V. Shatalova, et al., Polym. Sci. А. 58 (1), 50 (2016). https://doi.org/10.1134/S0965545X16010119
- H. Wang, J. Zhang, K.Tashiro, Macromolec. 50, 3285 (2017).
- L. Cartier, T. Okihara, Ikada Y., Tsuji H., Puiggali J., Lotz B. Polym. 41, 8909. (2000)
- C. Xu, D. Yuan, L. Fu, et al., Polym. Test 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005
补充文件
