Structural features of polylactide and natural rubber films produced by solution casting

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.

全文:

受限制的访问

作者简介

Yu. Tertyshnaya

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

编辑信件的主要联系方式.
Email: terj@rambler.ru
俄罗斯联邦, Moscow; Moscow

M. Podzorova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: terj@rambler.ru
俄罗斯联邦, Moscow; Moscow

S. Karpova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
俄罗斯联邦, Moscow

A. Krivandin

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
俄罗斯联邦, Moscow

参考

  1. Yu. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Russ. J. Phys. Chem. B 16 (1), 162 (2022). https://doi.org/10.1134/S1990793122010304
  2. S. Rogovina, L. Zhorina, A. Gatin, et al., Polym. 12, 1088 (2020). https://doi.org/10.3390/polym12051088
  3. I. A. Var’yan, N. N. Kolesnikova, A. A. Popov, Russ. J. Phys. Chem. B 15 (6), 1041 (2021). https://doi.org/10.1134/S1990793121060257
  4. C. Zhang, W. Wang, Y. Huang, et al., Mater. Design. 45, 198 (2013). https://doi.org/10.1016/j.matdes.2012.09.024
  5. W-L. Sia, W-Q. Yuana, Y-D. Lia, et al., Polym. Test. 65, 249 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.030
  6. S. Rogovina, K.V. Aleksanyan, L. V. Vladimirov, et al., Russ. J. Phys. Chem. B 13 (5), 812 (2019). https://doi.org/10.1134/S1990793119050099
  7. X. Lan, X. Li, Z. Liu, et al., J. Macromol. Sci., Pure Appl. Chem. 50, 861 (2013).
  8. Y. B. Tee, R. A. Talib, K. Abdan, et al., Agric. Agric. Sci. Proc. 2, 289 (2014). https://doi.org/10.1016/j.aaspro.2014.11.041
  9. N. F. Alias, H. Ismail, Polym.-Plast. Technol. Mater. 58, 1399 (2019). https://doi.org/10.1080/25740881.2018.1563118
  10. A. Ali Shah, F. Hasan, Z. Shah, et al., Int. Biodeterior. Biodegrad, 83, 145 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004
  11. B. Suksut, C. Deeprasertkul, J. Polym. Environ. 19, 288 (2010). https://doi.org/10.1007/s10924-010-0278-9
  12. S. Ishida, R. Nagasaki, K. Chino K., et al., J. Appl. Polym. Sci. 113, 558 (2009). https://doi.org/10.1002/app.30134
  13. N. Bitinis, R. Verdejo, P. Cassagnau, et al., Mater. Chem. Phys. 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
  14. D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  15. A. A. Ol’hov, M. A. Gol’dshtrah, L. S. Shibryeva, et al., Chem. Sustainable Developm. 24 (5), 633 (2016).
  16. X. Zhou, J. C. Feng, J. J. Yi, et al., Mater. Design. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069
  17. R. Auras, B. Harte, S. Selke, Macromol. Biosci. 4, 835 (2004). https://doi.org/10.1002.MABI.200400043
  18. A. V. Krivandin, A. B. Solov’еva, N. N. Glagolev, et al., Polym. 44, 5789 (2003). https://doi.org/10.1016/S0032-3861(03)00588-3
  19. O. V. Kazarina, A. G. Morozova, I. L. Fedyshkin, Polym. Sci. 63 (2), 83 (2021). https://doi.org/10.1134/S1560090421020056
  20. Y. Tertyshnaya, S. Karpova, M. Moskovskiy M., et al., Polym. 13, 2232. (2021). https://doi.org/10.3390/polym13142232
  21. V. N. Kuleznev Mixtures of polymers, Moscow, Chemistry, 304 p. (1980)
  22. Yu. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, Russ. J. Phys. Chem. B. 15 (5), 854 (2021). https://doi.org/10.1134/S1990793121050092
  23. L. Zhang, G. Zhao, G. Wang, Polym. 13, 3280 (2021). https://doi.org/10.3390/polym13193280
  24. Yu. V. Tertyshnaya, A.V. Krivandin, O. V. Shatalova, Russ. J. Phys. Chem. B. 17 (1), 171 (2023). https://doi.org/10.1134/S1990793123010128
  25. Yu. V. Tertyshnaya, S.G. Karpova, O.V. Shatalova, et al., Polym. Sci. А. 58 (1), 50 (2016). https://doi.org/10.1134/S0965545X16010119
  26. H. Wang, J. Zhang, K.Tashiro, Macromolec. 50, 3285 (2017).
  27. L. Cartier, T. Okihara, Ikada Y., Tsuji H., Puiggali J., Lotz B. Polym. 41, 8909. (2000)
  28. C. Xu, D. Yuan, L. Fu, et al., Polym. Test 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. 1H-NMR spectra of PLA (a) and 90PLA/10NK (b) samples.

下载 (119KB)
3. Fig. 2. EPR spectra of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

下载 (89KB)
4. Fig. 3. Melting thermograms of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

下载 (73KB)
5. Fig. 4. Diffraction patterns of PLA/NC film composites with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%. Transmission measurement.

下载 (101KB)
6. Fig. 5. Micrographs of PLA/NC film composites with NC content of 0 (a), 5 (b), 10 (c) and 15 (d) wt.%.

下载 (613KB)

版权所有 © Russian Academy of Sciences, 2024