Structural features of polylactide and natural rubber films produced by solution casting

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Tertyshnaya

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

Хат алмасуға жауапты Автор.
Email: terj@rambler.ru
Ресей, Moscow; Moscow

M. Podzorova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: terj@rambler.ru
Ресей, Moscow; Moscow

S. Karpova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
Ресей, Moscow

A. Krivandin

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
Ресей, Moscow

Әдебиет тізімі

  1. Yu. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Russ. J. Phys. Chem. B 16 (1), 162 (2022). https://doi.org/10.1134/S1990793122010304
  2. S. Rogovina, L. Zhorina, A. Gatin, et al., Polym. 12, 1088 (2020). https://doi.org/10.3390/polym12051088
  3. I. A. Var’yan, N. N. Kolesnikova, A. A. Popov, Russ. J. Phys. Chem. B 15 (6), 1041 (2021). https://doi.org/10.1134/S1990793121060257
  4. C. Zhang, W. Wang, Y. Huang, et al., Mater. Design. 45, 198 (2013). https://doi.org/10.1016/j.matdes.2012.09.024
  5. W-L. Sia, W-Q. Yuana, Y-D. Lia, et al., Polym. Test. 65, 249 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.030
  6. S. Rogovina, K.V. Aleksanyan, L. V. Vladimirov, et al., Russ. J. Phys. Chem. B 13 (5), 812 (2019). https://doi.org/10.1134/S1990793119050099
  7. X. Lan, X. Li, Z. Liu, et al., J. Macromol. Sci., Pure Appl. Chem. 50, 861 (2013).
  8. Y. B. Tee, R. A. Talib, K. Abdan, et al., Agric. Agric. Sci. Proc. 2, 289 (2014). https://doi.org/10.1016/j.aaspro.2014.11.041
  9. N. F. Alias, H. Ismail, Polym.-Plast. Technol. Mater. 58, 1399 (2019). https://doi.org/10.1080/25740881.2018.1563118
  10. A. Ali Shah, F. Hasan, Z. Shah, et al., Int. Biodeterior. Biodegrad, 83, 145 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004
  11. B. Suksut, C. Deeprasertkul, J. Polym. Environ. 19, 288 (2010). https://doi.org/10.1007/s10924-010-0278-9
  12. S. Ishida, R. Nagasaki, K. Chino K., et al., J. Appl. Polym. Sci. 113, 558 (2009). https://doi.org/10.1002/app.30134
  13. N. Bitinis, R. Verdejo, P. Cassagnau, et al., Mater. Chem. Phys. 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
  14. D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  15. A. A. Ol’hov, M. A. Gol’dshtrah, L. S. Shibryeva, et al., Chem. Sustainable Developm. 24 (5), 633 (2016).
  16. X. Zhou, J. C. Feng, J. J. Yi, et al., Mater. Design. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069
  17. R. Auras, B. Harte, S. Selke, Macromol. Biosci. 4, 835 (2004). https://doi.org/10.1002.MABI.200400043
  18. A. V. Krivandin, A. B. Solov’еva, N. N. Glagolev, et al., Polym. 44, 5789 (2003). https://doi.org/10.1016/S0032-3861(03)00588-3
  19. O. V. Kazarina, A. G. Morozova, I. L. Fedyshkin, Polym. Sci. 63 (2), 83 (2021). https://doi.org/10.1134/S1560090421020056
  20. Y. Tertyshnaya, S. Karpova, M. Moskovskiy M., et al., Polym. 13, 2232. (2021). https://doi.org/10.3390/polym13142232
  21. V. N. Kuleznev Mixtures of polymers, Moscow, Chemistry, 304 p. (1980)
  22. Yu. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, Russ. J. Phys. Chem. B. 15 (5), 854 (2021). https://doi.org/10.1134/S1990793121050092
  23. L. Zhang, G. Zhao, G. Wang, Polym. 13, 3280 (2021). https://doi.org/10.3390/polym13193280
  24. Yu. V. Tertyshnaya, A.V. Krivandin, O. V. Shatalova, Russ. J. Phys. Chem. B. 17 (1), 171 (2023). https://doi.org/10.1134/S1990793123010128
  25. Yu. V. Tertyshnaya, S.G. Karpova, O.V. Shatalova, et al., Polym. Sci. А. 58 (1), 50 (2016). https://doi.org/10.1134/S0965545X16010119
  26. H. Wang, J. Zhang, K.Tashiro, Macromolec. 50, 3285 (2017).
  27. L. Cartier, T. Okihara, Ikada Y., Tsuji H., Puiggali J., Lotz B. Polym. 41, 8909. (2000)
  28. C. Xu, D. Yuan, L. Fu, et al., Polym. Test 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. 1H-NMR spectra of PLA (a) and 90PLA/10NK (b) samples.

Жүктеу (119KB)
3. Fig. 2. EPR spectra of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

Жүктеу (89KB)
4. Fig. 3. Melting thermograms of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

Жүктеу (73KB)
5. Fig. 4. Diffraction patterns of PLA/NC film composites with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%. Transmission measurement.

Жүктеу (101KB)
6. Fig. 5. Micrographs of PLA/NC film composites with NC content of 0 (a), 5 (b), 10 (c) and 15 (d) wt.%.

Жүктеу (613KB)

© Russian Academy of Sciences, 2024