The effect of surface treatment of composite polypropylene fibers on their properties
- Autores: Kirillov V.E.1,2, Yurkov G.Y.1, Prorokova N.P.3,4, Vavilova S.Y.3, Ashmarin A.A.5, Solodilov V.I.1,2, Voronov A.S.6, Zvyagintsev D.A.7, Buznik V.M.7
-
Afiliações:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
- Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo State Polytechnic University
- A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Edição: Volume 44, Nº 2 (2025)
- Páginas: 99-110
- Seção: Chemical physics of polymeric materials
- URL: https://cijournal.ru/0207-401X/article/view/681131
- DOI: https://doi.org/10.31857/S0207401X25020106
- ID: 681131
Citar
Resumo
Composite materials containing zinc sulfide nanoparticles on the surface of microgranules of ultrafine polytetrafluoroethylene were obtained by thermal decomposition. The obtained materials were used to modify polypropylene fibers. The obtained filaments were examined by X-ray phase analysis and electron microscopy. Their mechanical and antibacterial properties have been studied. The particle sizes range from 7 to 30 nm. The application of the modifier makes the manifestation of edge defects less noticeable, which has a positive effect on their mechanical properties, such as modulus of elasticity and tensile strength. In addition, modification of polypropylene fibers leads to an increase in the antimicrobial properties of the modified thread.
Texto integral

Sobre autores
V. Kirillov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
Autor responsável pela correspondência
Email: kirillovladislav@gmail.com
Rússia, Moscow; Moscow
G. Yurkov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: kirillovladislav@gmail.com
Rússia, Moscow
N. Prorokova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Ivanovo State Polytechnic University
Email: kirillovladislav@gmail.com
Rússia, Ivanovo; Ivanovo
S. Vavilova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Email: kirillovladislav@gmail.com
Rússia, Ivanovo
A. Ashmarin
A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: kirillovladislav@gmail.com
Rússia, Moscow
V. Solodilov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
Email: kirillovladislav@gmail.com
Rússia, Moscow; Moscow
A. Voronov
The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
Email: kirillovladislav@gmail.com
Rússia, Moscow, Troitsk
D. Zvyagintsev
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: kirillovladislav@gmail.com
Rússia, Moscow
V. Buznik
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: kirillovladislav@gmail.com
Rússia, Moscow
Bibliografia
- A.A. Popov, A.K. Zykova, E.E. Mastalygina. Russ. J. Phys. Chem. B 14, 533 (2020). https://doi.org/10.1134/S1990793120030239
- A.M. Kuperman, Yu.A. Gorbatkina, R.A. Turusov. Russ. J. Phys. Chem. B 6, 553 (2012). https://doi.org/10.1134/S1990793112080064
- E. Berber, N. Horzum, B. Hazer, M.M. Demir. Fibers Polym 17, 760 (2016). https://doi.org/10.1007/s12221-016-6183-7
- S.K. Esthappan, S.K. Kuttappan, R. Joseph. Materials & Design 37, 537 (2012). https://doi.org/10.1016/j.matdes.2012.01.038
- A.S. Ruhov, T.D. Malinovskaya, V. Sachkov, M.A. Mishchenko, AMR 880, 229 (2014). https://doi.org/10.4028/www.scientific.net/AMR.880.229
- D. Marković, H.-H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, M. Radetić. Applied Surface Science 527, 146829 (2020). https://doi.org/10.1016/j.apsusc.2020.146829
- H.H. Alsharief, G.A.A. Al-Hazmi, S.O. Alzahrani, A. Almahri, N.A. Alamrani, N.M. Alatawi, N.M. El-Metwaly. Journal of Materials Research and Technology 20, 3146 (2022). https://doi.org/10.1016/j.jmrt.2022.08.104
- C.-H. Tseng, C.-C. Wang, C.-Y. Chen. J. Phys. Chem. B 110, 4020 (2006). https://doi.org/10.1021/jp055896e
- G. Zhang, Y. Xiao, J. Yan, N. Xie, R. Liu, Y. Zhang, Polymers 11, 1841 (2019). https://doi.org/10.3390/polym11111841
- B. Kord. Journal of Thermoplastic Composite Materials 25, 793 (2012). https://doi.org/10.1177/0892705711411344
- M. Tutak, M. Dogan, Fibers Polym 16, 2337 (2015). https://doi.org/10.1007/s12221-015-5213-1
- N.P. Prorokova, S.Yu. Vavilova, M.I. Biryukova, G.Yu. Yurkov, V.M. Buznik. Nanotechnol Russia 9, 533 (2014). https://doi.org/10.1134/S1995078014050140
- L.E. Lange, S.K. Obendorf. Arch Environ Contam Toxicol 62, 185 (2012). https://doi.org/10.1007/s00244-011-9702-y
- A.C. Nechifor, S. Cotorcea, C. Bungău, P.C. Albu, D. Pașcu, O. Oprea, A.R. Grosu, A. Pîrțac, G. Nechifor, Membranes 11, 256 (2021). https://doi.org/10.3390/membranes11040256
- V.A. Aleksandrova, A.M. Futoryanskaya. Russ. J. Phys. Chem. B 17, 1394 (2023). https://doi.org/10.1134/S1990793123060143
- R. Dastjerdi, M. Montazer, S. Shahsavan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 202 (2009). https://doi.org/10.1016/j.colsurfa.2009.05.007
- K.K. Goli, N. Gera, X. Liu, B.M. Rao, O.J. Rojas,J. Genzer. ACS Appl. Mater. Interfaces 5, 5298 (2013). https://doi.org/10.1021/am4011644
- M. Radetić. J. Mater Sci 48, 95 (2013). https://doi.org/10.1007/s10853-012-6677-7
- A.N. Klyamkina, P.M. Nedorezova, A.M. Aladyshev, Russ. J. Phys. Chem. B 17, 1355 (2023). https://doi.org/10.1134/s1990793123060052
- A. Tiwari, S.J. Dhoble. RSC Adv. 6, 64400 (2016). https://doi.org/10.1039/C6RA13108E
- W.F. Razumov. Russ. J. Phys. Chem. B 17, 36 (2023). https://doi.org/10.1134/S199079312301027X
- V.V. Danilov, A.S. Panfutova, V.B. Shilov, I.M. Belousova, G.M. Ermolaeva, A.I. Khrebtov, D.A. Videnichev. Russ. J. Phys. Chem. B 9, 561 (2015). https://doi.org/10.1134/S199079311504017X
- F. Zhao, G. Li, G. Zhang, T. Wang, Q. Wang. Wear 380–381, 86 (2017). https://doi.org/10.1016/j.wear.2017.03.007
- H. Noor, S.M. Faraz, M.W. Hanif, M. Ishaq, A. Zafar, S. Riaz, S. Naseem. Physica B: Condensed Matter 650, 414572 (2023). https://doi.org/10.1016/j.physb.2022.414572
- L. Wang, J. Ju, N. Deng, G. Wang, B. Cheng, W. Kang. Electrochemistry Communications 96, 1 (2018). https://doi.org/10.1016/j.elecom.2018.08.018
- S. Lv, Y. Han, L. Shuai, B. Chen, J. Wan. Journal of Luminescence 239, 118303 (2021). https://doi.org/10.1016/j.jlumin.2021.118303
- Y. Xin, Z. Jiang, W. Li, Z. Huang, C. Wang. Pigment & Resin Technology 44, 74 (2015). https://doi.org/10.1108/PRT-09-2013-0084
- N. Prorokova, S. Vavilova. Coatings 11, 830 (2021). https://doi.org/10.3390/coatings11070830
- A.M. Zhukov, V.I. Solodilov, I.V. Tretyakov, E.A. Burakova, G.Yu. Yurkov. Russ. J. Phys. Chem. B 16, 926 (2022). https://doi.org/10.1134/S199079312205013X
- N.P. Prorokova, S.Yu. Vavilova, O.Yu. Kuznetsov, V.M. Buznik. Nanotechnol Russia 10, 732 (2015). https://doi.org/10.1134/S1995078015050171
- N.P. Prorokova, S.Y. Vavilova, V.M. Bouznik. Journal of Fluorine Chemistry 204, 50 (2017). https://doi.org/10.1016/j.jfluchem.2017.10.009
- V.E. Kirillov, G.Y. Yurkov, M.S. Korobov, A.S. Voronov, V.I. Solodilov, V.M. Bouznik. Russ. J. Phys. Chem. B 17, 1346 (2023). https://doi.org/10.1134/S1990793123060040
- S.P. Gubin, G.Yu. Yurkov, M.S. Korobov, Yu.A. Koksharov, A.V. Kozinkin, I.V. Pirog, S.V. Zubkov, V.V. Kitaev, D.A. Sarichev, V.M. Bouznik, A.K. Tsvetnikov. Acta Materialia 53, 1407 (2005). https://doi.org/10.1016/j.actamat.2004.11.033
- Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (Withdrawn 2010). https://www.astm.org/e2149-01.html
Arquivos suplementares
