The effect of surface treatment of composite polypropylene fibers on their properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Composite materials containing zinc sulfide nanoparticles on the surface of microgranules of ultrafine polytetrafluoroethylene were obtained by thermal decomposition. The obtained materials were used to modify polypropylene fibers. The obtained filaments were examined by X-ray phase analysis and electron microscopy. Their mechanical and antibacterial properties have been studied. The particle sizes range from 7 to 30 nm. The application of the modifier makes the manifestation of edge defects less noticeable, which has a positive effect on their mechanical properties, such as modulus of elasticity and tensile strength. In addition, modification of polypropylene fibers leads to an increase in the antimicrobial properties of the modified thread.

Full Text

Restricted Access

About the authors

V. E. Kirillov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University

Author for correspondence.
Email: kirillovladislav@gmail.com
Russian Federation, Moscow; Moscow

G. Y. Yurkov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Russian Federation, Moscow

N. P. Prorokova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Ivanovo State Polytechnic University

Email: kirillovladislav@gmail.com
Russian Federation, Ivanovo; Ivanovo

S. Y. Vavilova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Russian Federation, Ivanovo

A. A. Ashmarin

A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Russian Federation, Moscow

V. I. Solodilov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University

Email: kirillovladislav@gmail.com
Russian Federation, Moscow; Moscow

A. S. Voronov

The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research

Email: kirillovladislav@gmail.com
Russian Federation, Moscow, Troitsk

D. A. Zvyagintsev

N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Russian Federation, Moscow

V. M. Buznik

N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kirillovladislav@gmail.com
Russian Federation, Moscow

References

  1. A.A. Popov, A.K. Zykova, E.E. Mastalygina. Russ. J. Phys. Chem. B 14, 533 (2020). https://doi.org/10.1134/S1990793120030239
  2. A.M. Kuperman, Yu.A. Gorbatkina, R.A. Turusov. Russ. J. Phys. Chem. B 6, 553 (2012). https://doi.org/10.1134/S1990793112080064
  3. E. Berber, N. Horzum, B. Hazer, M.M. Demir. Fibers Polym 17, 760 (2016). https://doi.org/10.1007/s12221-016-6183-7
  4. S.K. Esthappan, S.K. Kuttappan, R. Joseph. Materials & Design 37, 537 (2012). https://doi.org/10.1016/j.matdes.2012.01.038
  5. A.S. Ruhov, T.D. Malinovskaya, V. Sachkov, M.A. Mishchenko, AMR 880, 229 (2014). https://doi.org/10.4028/www.scientific.net/AMR.880.229
  6. D. Marković, H.-H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, M. Radetić. Applied Surface Science 527, 146829 (2020). https://doi.org/10.1016/j.apsusc.2020.146829
  7. H.H. Alsharief, G.A.A. Al-Hazmi, S.O. Alzahrani, A. Almahri, N.A. Alamrani, N.M. Alatawi, N.M. El-Metwaly. Journal of Materials Research and Technology 20, 3146 (2022). https://doi.org/10.1016/j.jmrt.2022.08.104
  8. C.-H. Tseng, C.-C. Wang, C.-Y. Chen. J. Phys. Chem. B 110, 4020 (2006). https://doi.org/10.1021/jp055896e
  9. G. Zhang, Y. Xiao, J. Yan, N. Xie, R. Liu, Y. Zhang, Polymers 11, 1841 (2019). https://doi.org/10.3390/polym11111841
  10. B. Kord. Journal of Thermoplastic Composite Materials 25, 793 (2012). https://doi.org/10.1177/0892705711411344
  11. M. Tutak, M. Dogan, Fibers Polym 16, 2337 (2015). https://doi.org/10.1007/s12221-015-5213-1
  12. N.P. Prorokova, S.Yu. Vavilova, M.I. Biryukova, G.Yu. Yurkov, V.M. Buznik. Nanotechnol Russia 9, 533 (2014). https://doi.org/10.1134/S1995078014050140
  13. L.E. Lange, S.K. Obendorf. Arch Environ Contam Toxicol 62, 185 (2012). https://doi.org/10.1007/s00244-011-9702-y
  14. A.C. Nechifor, S. Cotorcea, C. Bungău, P.C. Albu, D. Pașcu, O. Oprea, A.R. Grosu, A. Pîrțac, G. Nechifor, Membranes 11, 256 (2021). https://doi.org/10.3390/membranes11040256
  15. V.A. Aleksandrova, A.M. Futoryanskaya. Russ. J. Phys. Chem. B 17, 1394 (2023). https://doi.org/10.1134/S1990793123060143
  16. R. Dastjerdi, M. Montazer, S. Shahsavan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 202 (2009). https://doi.org/10.1016/j.colsurfa.2009.05.007
  17. K.K. Goli, N. Gera, X. Liu, B.M. Rao, O.J. Rojas,J. Genzer. ACS Appl. Mater. Interfaces 5, 5298 (2013). https://doi.org/10.1021/am4011644
  18. M. Radetić. J. Mater Sci 48, 95 (2013). https://doi.org/10.1007/s10853-012-6677-7
  19. A.N. Klyamkina, P.M. Nedorezova, A.M. Aladyshev, Russ. J. Phys. Chem. B 17, 1355 (2023). https://doi.org/10.1134/s1990793123060052
  20. A. Tiwari, S.J. Dhoble. RSC Adv. 6, 64400 (2016). https://doi.org/10.1039/C6RA13108E
  21. W.F. Razumov. Russ. J. Phys. Chem. B 17, 36 (2023). https://doi.org/10.1134/S199079312301027X
  22. V.V. Danilov, A.S. Panfutova, V.B. Shilov, I.M. Belousova, G.M. Ermolaeva, A.I. Khrebtov, D.A. Videnichev. Russ. J. Phys. Chem. B 9, 561 (2015). https://doi.org/10.1134/S199079311504017X
  23. F. Zhao, G. Li, G. Zhang, T. Wang, Q. Wang. Wear 380–381, 86 (2017). https://doi.org/10.1016/j.wear.2017.03.007
  24. H. Noor, S.M. Faraz, M.W. Hanif, M. Ishaq, A. Zafar, S. Riaz, S. Naseem. Physica B: Condensed Matter 650, 414572 (2023). https://doi.org/10.1016/j.physb.2022.414572
  25. L. Wang, J. Ju, N. Deng, G. Wang, B. Cheng, W. Kang. Electrochemistry Communications 96, 1 (2018). https://doi.org/10.1016/j.elecom.2018.08.018
  26. S. Lv, Y. Han, L. Shuai, B. Chen, J. Wan. Journal of Luminescence 239, 118303 (2021). https://doi.org/10.1016/j.jlumin.2021.118303
  27. Y. Xin, Z. Jiang, W. Li, Z. Huang, C. Wang. Pigment & Resin Technology 44, 74 (2015). https://doi.org/10.1108/PRT-09-2013-0084
  28. N. Prorokova, S. Vavilova. Coatings 11, 830 (2021). https://doi.org/10.3390/coatings11070830
  29. A.M. Zhukov, V.I. Solodilov, I.V. Tretyakov, E.A. Burakova, G.Yu. Yurkov. Russ. J. Phys. Chem. B 16, 926 (2022). https://doi.org/10.1134/S199079312205013X
  30. N.P. Prorokova, S.Yu. Vavilova, O.Yu. Kuznetsov, V.M. Buznik. Nanotechnol Russia 10, 732 (2015). https://doi.org/10.1134/S1995078015050171
  31. N.P. Prorokova, S.Y. Vavilova, V.M. Bouznik. Journal of Fluorine Chemistry 204, 50 (2017). https://doi.org/10.1016/j.jfluchem.2017.10.009
  32. V.E. Kirillov, G.Y. Yurkov, M.S. Korobov, A.S. Voronov, V.I. Solodilov, V.M. Bouznik. Russ. J. Phys. Chem. B 17, 1346 (2023). https://doi.org/10.1134/S1990793123060040
  33. S.P. Gubin, G.Yu. Yurkov, M.S. Korobov, Yu.A. Koksharov, A.V. Kozinkin, I.V. Pirog, S.V. Zubkov, V.V. Kitaev, D.A. Sarichev, V.M. Bouznik, A.K. Tsvetnikov. Acta Materialia 53, 1407 (2005). https://doi.org/10.1016/j.actamat.2004.11.033
  34. Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (Withdrawn 2010). https://www.astm.org/e2149-01.html

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of the UPTFE + ZnS composite; UPTFE: 2θ = 18.08 (crystalline phase), 2θ = 32, 37, 42 (X-ray amorphous phase); ZnS: 2θ = 28.64, 47.58, 56.35 (for wurtzite dhkl = 3.15, 1.90, 1.63).

Download (18KB)
3. Fig. 2. SEM micrographs of the original PP fiber (a) and fiber modified with UPTFE + ZnS composite (b).

Download (319KB)
4. Fig. 3. TEM micrograph with a general view of crushed and ultrasonically dispersed PP threads modified with UPTFE + ZnS composite. The inset shows the distribution of nanoparticles by size.

Download (414KB)
5. Fig. 4. DSC thermograms for samples of fibers based on polypropylene grade “Balen” 01030 (the compositions of the samples are given in Table 1): 1 – sample No. 1 (solid line), 2 – sample No. 2 with applied coating (dots), 3 – sample No. 3 with applied coating, treated with ultrasound (dashed line), 4 – volumetrically modified sample No. 4 (gray dashed-dotted line).

Download (37KB)

Copyright (c) 2025 Russian Academy of Sciences