Structural and thermodynamic parameters of a biopolymeric oral delivery system for liposomal form of a combination of nutraceuticals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A liposomal form of a combination of hydrophobic nutraceuticals (omega-3 docosahexaenoic polyunsaturated fatty acid (DHA) and clove essential oil (CEО)) was prepared based on soya phosphatidylcholine (PC). The impact of DHA and CEO on the microviscosity of the bilayer of PC liposomes was investigated through the use of EPR spectroscopy. Furthermore, the influence of DHA and CEO on the phase state of the bilayer of model dipalmitoylphosphatidylcholine liposomes was ascertained through the analysis of DSC data. A combination of EPR spectroscopy, DSC and laser light scattering methods was employed to investigate the effect of liposome encapsulation (PC-DHA-CEO) with a covalent conjugate (С) of sodium caseinate and maltodextrin on the structural state of the encapsulated liposome. Furthermore, the investigation concentrated on the structural characteristics (molar mass, size, density, architecture and zeta potential) and the thermodynamic parameters (osmotic second virial coefficient) of the water-soluble supramolecular complex PC-DHA-CEO-С. The key structural parameters of this complex have been identified as providing effective protection of PUFAs included in its composition from oxidation by air oxygen.

Texto integral

Acesso é fechado

Sobre autores

М. Semenova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mariagersem@mail.ru
Rússia, Moscow

A. Antipova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

E. Martirosova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

M. Anokhina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

D. Zelikina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

N. Bogdanova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

N. Palmina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Rússia, Moscow

Bibliografia

  1. Ahmmed M.K., Ahmmed F., Tian H. et al. // Сompr. Rev. Food Sci. Food Saf. 19, 64 (2020).
  2. Kalkman H.O., Hersberger M., Walitza S. et al. // Int. J. Mol. Sci. 22, 4393 (2021).
  3. Patel A., Desai S.S., Mane, V.K. et al.// Trends Food Sci. Technol. 120, 140 (2022).
  4. Scotto di Palumbo A., McSwiney F.T., Hone M. et al. // J. Diet. Suppl. 19, 499 (2022).
  5. Kharat M., McClements D.J. // J. Colloid Interface Sci. 557, 506 (2019).
  6. Aleksandrova V.A., Futoryanskaya A.M. // Russ. J. Phys. Chem. B. 17, 1394 (2023).
  7. Shishkina L.N., Kozlov M.V., Konstantinova T.V. et al. // Russ. J. Phys. Chem. B. 17, 141 (2023).
  8. Piwowarczyk L., Kucinska M., Tomczak S. et al. // Nanomater. 12, 1274 (2022).
  9. Na J.-Y., Song K., Kim S. et al. // Biochem. Biophys. Res. Commun. 460, 308 (2015).
  10. Tereshkin E.V., Tereshkina K.B., Loiko N.G., et al. // Russ. J. Phys. Chem. B. 17, 608 (2023).
  11. Stovbun S.V., Vedenkin A.S., Mikhaleva M.G., et al. // Russ. J. Phys. Chem. B. 16, 1147 (2022).
  12. Falsafi S.R., Rostamabadi H., Samborska K. et al. // Pharmacol. Res. 178, 106164 (2022).
  13. Gumus C.E., Davidov-Pardo G., McClements D.J. // Food Hydrocoll. 60, 38 (2016).
  14. Misharina T.A., Alinkina E.S., Vorobjeva A.K. et al. // Appl. Biochem. Microbiol. 52, 336 (2016).
  15. Methodical recommendations MR 2.3.1.0253-21. Norms of physiological needs in energy and food substances for different population groups of the Russian Federation. Moscow: Rospotrebnadzor, 2021. P. 72.
  16. Zelikina D., Chebotarev S., Komarova A. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 651, 129630 (2022).
  17. Buttefield D.A., Whisnant C.C., Chesnut D.B. // BBA. 426, 697 (1976).
  18. Burchard W., in Physical techniques for the study of food biopolymers, Ed. By RossMurphy S.B. (Blackie, Glasgow, 1994), p. 151.
  19. Pedroni V.I., Sierra M.B., Alarćon L.M. et al. // Biochim. Biophys. Acta, Biomembr. 1863, 183584 (2021).
  20. Dragicevic-Curic N., Friedrich M., Petersen S. et al. // Int. J. Pharm. 412, 85 (2011).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Thermograms of the phase transition of the DPPC liposome bilayer (0.5 × 10-3 M) from a gel-like to a liquid crystalline state in the presence of DHA, EMG and as a result of encapsulation with a conjugate (Kaz-Na-MD); pH = 7.0, I = 0.001 M.

Baixar (73KB)
3. Fig. 2. Accumulation of the secondary product of PUFA peroxidation (MDA) in aqueous solutions of PC-DHA (1), PC-DHA-EMG (2) liposomes and the PC-DHA-EMG-C supramolecular complex (3) during their storage for 24 days at room temperature (20–22 °C) in the light (pH = 7.0, I = 0.001 M).

Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024