Structural and thermodynamic parameters of a biopolymeric oral delivery system for liposomal form of a combination of nutraceuticals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A liposomal form of a combination of hydrophobic nutraceuticals (omega-3 docosahexaenoic polyunsaturated fatty acid (DHA) and clove essential oil (CEО)) was prepared based on soya phosphatidylcholine (PC). The impact of DHA and CEO on the microviscosity of the bilayer of PC liposomes was investigated through the use of EPR spectroscopy. Furthermore, the influence of DHA and CEO on the phase state of the bilayer of model dipalmitoylphosphatidylcholine liposomes was ascertained through the analysis of DSC data. A combination of EPR spectroscopy, DSC and laser light scattering methods was employed to investigate the effect of liposome encapsulation (PC-DHA-CEO) with a covalent conjugate (С) of sodium caseinate and maltodextrin on the structural state of the encapsulated liposome. Furthermore, the investigation concentrated on the structural characteristics (molar mass, size, density, architecture and zeta potential) and the thermodynamic parameters (osmotic second virial coefficient) of the water-soluble supramolecular complex PC-DHA-CEO-С. The key structural parameters of this complex have been identified as providing effective protection of PUFAs included in its composition from oxidation by air oxygen.

Full Text

Restricted Access

About the authors

М. G. Semenova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: mariagersem@mail.ru
Russian Federation, Moscow

A. S. Antipova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

E. I. Martirosova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

M. S. Anokhina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

D. V. Zelikina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

N. G. Bogdanova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

N. P. Palmina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
Russian Federation, Moscow

References

  1. Ahmmed M.K., Ahmmed F., Tian H. et al. // Сompr. Rev. Food Sci. Food Saf. 19, 64 (2020).
  2. Kalkman H.O., Hersberger M., Walitza S. et al. // Int. J. Mol. Sci. 22, 4393 (2021).
  3. Patel A., Desai S.S., Mane, V.K. et al.// Trends Food Sci. Technol. 120, 140 (2022).
  4. Scotto di Palumbo A., McSwiney F.T., Hone M. et al. // J. Diet. Suppl. 19, 499 (2022).
  5. Kharat M., McClements D.J. // J. Colloid Interface Sci. 557, 506 (2019).
  6. Aleksandrova V.A., Futoryanskaya A.M. // Russ. J. Phys. Chem. B. 17, 1394 (2023).
  7. Shishkina L.N., Kozlov M.V., Konstantinova T.V. et al. // Russ. J. Phys. Chem. B. 17, 141 (2023).
  8. Piwowarczyk L., Kucinska M., Tomczak S. et al. // Nanomater. 12, 1274 (2022).
  9. Na J.-Y., Song K., Kim S. et al. // Biochem. Biophys. Res. Commun. 460, 308 (2015).
  10. Tereshkin E.V., Tereshkina K.B., Loiko N.G., et al. // Russ. J. Phys. Chem. B. 17, 608 (2023).
  11. Stovbun S.V., Vedenkin A.S., Mikhaleva M.G., et al. // Russ. J. Phys. Chem. B. 16, 1147 (2022).
  12. Falsafi S.R., Rostamabadi H., Samborska K. et al. // Pharmacol. Res. 178, 106164 (2022).
  13. Gumus C.E., Davidov-Pardo G., McClements D.J. // Food Hydrocoll. 60, 38 (2016).
  14. Misharina T.A., Alinkina E.S., Vorobjeva A.K. et al. // Appl. Biochem. Microbiol. 52, 336 (2016).
  15. Methodical recommendations MR 2.3.1.0253-21. Norms of physiological needs in energy and food substances for different population groups of the Russian Federation. Moscow: Rospotrebnadzor, 2021. P. 72.
  16. Zelikina D., Chebotarev S., Komarova A. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 651, 129630 (2022).
  17. Buttefield D.A., Whisnant C.C., Chesnut D.B. // BBA. 426, 697 (1976).
  18. Burchard W., in Physical techniques for the study of food biopolymers, Ed. By RossMurphy S.B. (Blackie, Glasgow, 1994), p. 151.
  19. Pedroni V.I., Sierra M.B., Alarćon L.M. et al. // Biochim. Biophys. Acta, Biomembr. 1863, 183584 (2021).
  20. Dragicevic-Curic N., Friedrich M., Petersen S. et al. // Int. J. Pharm. 412, 85 (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thermograms of the phase transition of the DPPC liposome bilayer (0.5 × 10-3 M) from a gel-like to a liquid crystalline state in the presence of DHA, EMG and as a result of encapsulation with a conjugate (Kaz-Na-MD); pH = 7.0, I = 0.001 M.

Download (73KB)
3. Fig. 2. Accumulation of the secondary product of PUFA peroxidation (MDA) in aqueous solutions of PC-DHA (1), PC-DHA-EMG (2) liposomes and the PC-DHA-EMG-C supramolecular complex (3) during their storage for 24 days at room temperature (20–22 °C) in the light (pH = 7.0, I = 0.001 M).

Download (21KB)

Copyright (c) 2024 Russian Academy of Sciences