Structural and thermodynamic parameters of a biopolymeric oral delivery system for liposomal form of a combination of nutraceuticals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A liposomal form of a combination of hydrophobic nutraceuticals (omega-3 docosahexaenoic polyunsaturated fatty acid (DHA) and clove essential oil (CEО)) was prepared based on soya phosphatidylcholine (PC). The impact of DHA and CEO on the microviscosity of the bilayer of PC liposomes was investigated through the use of EPR spectroscopy. Furthermore, the influence of DHA and CEO on the phase state of the bilayer of model dipalmitoylphosphatidylcholine liposomes was ascertained through the analysis of DSC data. A combination of EPR spectroscopy, DSC and laser light scattering methods was employed to investigate the effect of liposome encapsulation (PC-DHA-CEO) with a covalent conjugate (С) of sodium caseinate and maltodextrin on the structural state of the encapsulated liposome. Furthermore, the investigation concentrated on the structural characteristics (molar mass, size, density, architecture and zeta potential) and the thermodynamic parameters (osmotic second virial coefficient) of the water-soluble supramolecular complex PC-DHA-CEO-С. The key structural parameters of this complex have been identified as providing effective protection of PUFAs included in its composition from oxidation by air oxygen.

全文:

受限制的访问

作者简介

М. Semenova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

A. Antipova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

E. Martirosova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

M. Anokhina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

D. Zelikina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

N. Bogdanova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

N. Palmina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: mariagersem@mail.ru
俄罗斯联邦, Moscow

参考

  1. Ahmmed M.K., Ahmmed F., Tian H. et al. // Сompr. Rev. Food Sci. Food Saf. 19, 64 (2020).
  2. Kalkman H.O., Hersberger M., Walitza S. et al. // Int. J. Mol. Sci. 22, 4393 (2021).
  3. Patel A., Desai S.S., Mane, V.K. et al.// Trends Food Sci. Technol. 120, 140 (2022).
  4. Scotto di Palumbo A., McSwiney F.T., Hone M. et al. // J. Diet. Suppl. 19, 499 (2022).
  5. Kharat M., McClements D.J. // J. Colloid Interface Sci. 557, 506 (2019).
  6. Aleksandrova V.A., Futoryanskaya A.M. // Russ. J. Phys. Chem. B. 17, 1394 (2023).
  7. Shishkina L.N., Kozlov M.V., Konstantinova T.V. et al. // Russ. J. Phys. Chem. B. 17, 141 (2023).
  8. Piwowarczyk L., Kucinska M., Tomczak S. et al. // Nanomater. 12, 1274 (2022).
  9. Na J.-Y., Song K., Kim S. et al. // Biochem. Biophys. Res. Commun. 460, 308 (2015).
  10. Tereshkin E.V., Tereshkina K.B., Loiko N.G., et al. // Russ. J. Phys. Chem. B. 17, 608 (2023).
  11. Stovbun S.V., Vedenkin A.S., Mikhaleva M.G., et al. // Russ. J. Phys. Chem. B. 16, 1147 (2022).
  12. Falsafi S.R., Rostamabadi H., Samborska K. et al. // Pharmacol. Res. 178, 106164 (2022).
  13. Gumus C.E., Davidov-Pardo G., McClements D.J. // Food Hydrocoll. 60, 38 (2016).
  14. Misharina T.A., Alinkina E.S., Vorobjeva A.K. et al. // Appl. Biochem. Microbiol. 52, 336 (2016).
  15. Methodical recommendations MR 2.3.1.0253-21. Norms of physiological needs in energy and food substances for different population groups of the Russian Federation. Moscow: Rospotrebnadzor, 2021. P. 72.
  16. Zelikina D., Chebotarev S., Komarova A. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 651, 129630 (2022).
  17. Buttefield D.A., Whisnant C.C., Chesnut D.B. // BBA. 426, 697 (1976).
  18. Burchard W., in Physical techniques for the study of food biopolymers, Ed. By RossMurphy S.B. (Blackie, Glasgow, 1994), p. 151.
  19. Pedroni V.I., Sierra M.B., Alarćon L.M. et al. // Biochim. Biophys. Acta, Biomembr. 1863, 183584 (2021).
  20. Dragicevic-Curic N., Friedrich M., Petersen S. et al. // Int. J. Pharm. 412, 85 (2011).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Thermograms of the phase transition of the DPPC liposome bilayer (0.5 × 10-3 M) from a gel-like to a liquid crystalline state in the presence of DHA, EMG and as a result of encapsulation with a conjugate (Kaz-Na-MD); pH = 7.0, I = 0.001 M.

下载 (73KB)
3. Fig. 2. Accumulation of the secondary product of PUFA peroxidation (MDA) in aqueous solutions of PC-DHA (1), PC-DHA-EMG (2) liposomes and the PC-DHA-EMG-C supramolecular complex (3) during their storage for 24 days at room temperature (20–22 °C) in the light (pH = 7.0, I = 0.001 M).

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2024