Spectral model for calculation of radiation characteristics of shock heated gas

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The extended version of the previously developed computational procedure SPECTRUM is presented, which allows to calculate the radiation characteristics of a shock-heated gas, taking into account the decrease in the radiation intensity in an absorbing medium. The procedure is based on line-by-line calculation of the emission and absorption spectra of atoms and molecules that make up the gas mixture under study. When calculating the emission spectra of atoms and molecules, the values of spectroscopic constants were taken from known databases. The results of calculating the time-integrated spectral characteristics of shock-heated air are compared with the available experimental data obtained in the ultraviolet, visible, and infrared regions of the spectrum.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Bykova

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Ресей, Moscow

A. Kusov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Ресей, Moscow

P. Kozlov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Ресей, Moscow

G. Gerasimov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Ресей, Moscow

V. Levashov

Institute of Mechanics, Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: vyl69@mail.ru
Ресей, Moscow

I. Zabelinsky

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Ресей, Moscow

Әдебиет тізімі

  1. Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
  2. Zhao Y., Huang H. // Ibid. 2020. V. 169. P. 84.
  3. Surzhikov S.T. // Rus. J. Phys. Chem. B 2010. V. 4. P. 613.
  4. Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
  5. Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. No. 100607.
  6. Zabelinskii I.E., Kozlov P.V., Akimov Yu.V., Bykoba N.G., Gerasimov G.Ya., Tunik Yu.V., Levashov V.Yu. // Rus. J. Phys. Chem. B 2021. V. 15. P. 963.
  7. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B 2022. V. 16. P. 642.
  8. Whiting E., Park C., Liu Y., Arnold J., Paterson J. // NASA Ref. Publ. 1996. № 1389.
  9. Johnston C.O., Hollis B.R., Sutton K. // J. Spacecraft Rockets. 2008. V. 45. № 5. P. 865.
  10. Kumar N., Bansal A. // Acta Astronaut. 2023. V. 205. P. 172.
  11. Johnston C.O., Hollis B.R., Sutton K. // J. Spacecr. Rockets. 2008. V. 45. P. 879.
  12. Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transf. 2016. V. 30. P. 197.
  13. Karpuzcu I.T., Jouffray M.P., Levin D.A. // J. Thermophys. Heat Transf. 2022. V. 36. P. 982.
  14. Du Y.W., Sun S.R., Tan M.J et al. // Acta Astronaut. 2022. V. 193. P. 521.
  15. Dikalyuk A.S., Surzhikov S.T., Kozlov P.V., Shatalov O.P., Romanenko Y.V. AIAA Paper. 2013. № 2013–2505.
  16. Umanskii S.Y., Adamson S.O., Vetchinkin A.S., Deminskii M.A., Olkhov O.A., Chaikina Y.A., Shushin A.I., Golubkov M.G. // Rus. J. Phys. Chem. B 2023. V. 7. P. 346.
  17. Zhu T., Li Z., Levin D.A. // J. Thermophys. Heat Transfer. 2014. V. 28. P. 623.
  18. Gimelshein S.F., Wysong I.J., Fangman A.J. et al. // Ibid. 2022. V. 36. P. 870.
  19. Kozlov P.V., Kusov A.L., Bykova N.G., Zabelinskii I.E., Levashov V.Yu., Gerasimov G.Ya. // Rus. J. Phys. Chem. 2023. V. 17. P. 456.
  20. Bykova N.G., Kuznetsova L.A. // Opt. Spectrosc. 2008. V. 105. P. 668.
  21. Wayne R.P. Principles and Applications of Photochemistry. Oxford University Press, Oxford, 1088.
  22. Nordebo S. // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 270. № 107715.
  23. Surzhikov S.T. AIAA Paper. 2002. № 2002–2898.
  24. NIST Atomic Spectra Database, Ver. 5.10. Gaithersburg: NIST, 2021.
  25. https://doi.org/10.18434/T4W30F
  26. Arnold J.O., Whiting E.E., Lyle G.C. // J. Quant. Spectrosc. Radiat. Transf. 1969. V. 9. P. 775.
  27. Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. Nauka, Moscow, 1980.
  28. Kuznetsova L.A., Surzhikov S.T. // Math. Model. 1998. V. 36. № 5. P. 15.
  29. Glushko V.P. (Ed.). Thermodynamic Properties of Individual Substances, V. II. Nauka, Moscow, 1979.
  30. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 57. P. 780.
  31. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 58. P. 573.
  32. Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. № 4. P. 1.
  33. Johnston C.O. AIAA Paper. 2008. № 2008–1245.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Oscillator strengths of the radiation band system: a – N₂(2+) and b – N⁺₂(1–).

Жүктеу (125KB)
3. Fig. 2. Comparison of the calculated (1) and experimental (2) spectrograms of the air radiation power in the ultraviolet and visible regions of the spectrum at VSW = 10 km/s.

Жүктеу (81KB)
4. Fig. 2. Comparison of the calculated (1) and experimental (2) spectrograms of the air radiation power in the ultraviolet and visible regions of the spectrum at VSW = 10 km/s.

Жүктеу (77KB)
5. Fig. 4. Air emission spectrum with high spectral resolution in the wavelength range λ = 335–360 nm at VSW = 10.0 km/s: 1 – N₂(2+); 2 – N⁺₂ (1–); 3 – CN; 4 – DDST-M experiment.

Жүктеу (156KB)
6. Fig. 5. Comparison of the calculation results (1) of the radiation power of shock-heated air in the visible and near infrared regions of the spectrum with experimental data (2) at VSW = 10 km/s.

Жүктеу (101KB)
7. Fig. 6. Air emission spectrum with high spectral resolution in the wavelength range λ = 850–875 nm at VSW = 10.0 km/s: 1 – calculation results, 2 – experimental data.

Жүктеу (79KB)

© Russian Academy of Sciences, 2024