Spectral model for calculation of radiation characteristics of shock heated gas
- Авторлар: Bykova N.G.1, Kusov A.L.1, Kozlov P.V.1, Gerasimov G.Y.1, Levashov V.Y.1, Zabelinsky I.E.1
-
Мекемелер:
- Institute of Mechanics, Lomonosov Moscow State University
- Шығарылым: Том 43, № 6 (2024)
- Беттер: 33-40
- Бөлім: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674934
- DOI: https://doi.org/10.31857/S0207401X24060042
- ID: 674934
Дәйексөз келтіру
Аннотация
The extended version of the previously developed computational procedure SPECTRUM is presented, which allows to calculate the radiation characteristics of a shock-heated gas, taking into account the decrease in the radiation intensity in an absorbing medium. The procedure is based on line-by-line calculation of the emission and absorption spectra of atoms and molecules that make up the gas mixture under study. When calculating the emission spectra of atoms and molecules, the values of spectroscopic constants were taken from known databases. The results of calculating the time-integrated spectral characteristics of shock-heated air are compared with the available experimental data obtained in the ultraviolet, visible, and infrared regions of the spectrum.
Негізгі сөздер
Толық мәтін

Авторлар туралы
N. Bykova
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Ресей, Moscow
A. Kusov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Ресей, Moscow
P. Kozlov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Ресей, Moscow
G. Gerasimov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Ресей, Moscow
V. Levashov
Institute of Mechanics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: vyl69@mail.ru
Ресей, Moscow
I. Zabelinsky
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Ресей, Moscow
Әдебиет тізімі
- Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
- Zhao Y., Huang H. // Ibid. 2020. V. 169. P. 84.
- Surzhikov S.T. // Rus. J. Phys. Chem. B 2010. V. 4. P. 613.
- Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
- Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. No. 100607.
- Zabelinskii I.E., Kozlov P.V., Akimov Yu.V., Bykoba N.G., Gerasimov G.Ya., Tunik Yu.V., Levashov V.Yu. // Rus. J. Phys. Chem. B 2021. V. 15. P. 963.
- Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B 2022. V. 16. P. 642.
- Whiting E., Park C., Liu Y., Arnold J., Paterson J. // NASA Ref. Publ. 1996. № 1389.
- Johnston C.O., Hollis B.R., Sutton K. // J. Spacecraft Rockets. 2008. V. 45. № 5. P. 865.
- Kumar N., Bansal A. // Acta Astronaut. 2023. V. 205. P. 172.
- Johnston C.O., Hollis B.R., Sutton K. // J. Spacecr. Rockets. 2008. V. 45. P. 879.
- Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transf. 2016. V. 30. P. 197.
- Karpuzcu I.T., Jouffray M.P., Levin D.A. // J. Thermophys. Heat Transf. 2022. V. 36. P. 982.
- Du Y.W., Sun S.R., Tan M.J et al. // Acta Astronaut. 2022. V. 193. P. 521.
- Dikalyuk A.S., Surzhikov S.T., Kozlov P.V., Shatalov O.P., Romanenko Y.V. AIAA Paper. 2013. № 2013–2505.
- Umanskii S.Y., Adamson S.O., Vetchinkin A.S., Deminskii M.A., Olkhov O.A., Chaikina Y.A., Shushin A.I., Golubkov M.G. // Rus. J. Phys. Chem. B 2023. V. 7. P. 346.
- Zhu T., Li Z., Levin D.A. // J. Thermophys. Heat Transfer. 2014. V. 28. P. 623.
- Gimelshein S.F., Wysong I.J., Fangman A.J. et al. // Ibid. 2022. V. 36. P. 870.
- Kozlov P.V., Kusov A.L., Bykova N.G., Zabelinskii I.E., Levashov V.Yu., Gerasimov G.Ya. // Rus. J. Phys. Chem. 2023. V. 17. P. 456.
- Bykova N.G., Kuznetsova L.A. // Opt. Spectrosc. 2008. V. 105. P. 668.
- Wayne R.P. Principles and Applications of Photochemistry. Oxford University Press, Oxford, 1088.
- Nordebo S. // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 270. № 107715.
- Surzhikov S.T. AIAA Paper. 2002. № 2002–2898.
- NIST Atomic Spectra Database, Ver. 5.10. Gaithersburg: NIST, 2021.
- https://doi.org/10.18434/T4W30F
- Arnold J.O., Whiting E.E., Lyle G.C. // J. Quant. Spectrosc. Radiat. Transf. 1969. V. 9. P. 775.
- Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. Nauka, Moscow, 1980.
- Kuznetsova L.A., Surzhikov S.T. // Math. Model. 1998. V. 36. № 5. P. 15.
- Glushko V.P. (Ed.). Thermodynamic Properties of Individual Substances, V. II. Nauka, Moscow, 1979.
- Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 57. P. 780.
- Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 58. P. 573.
- Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. № 4. P. 1.
- Johnston C.O. AIAA Paper. 2008. № 2008–1245.
Қосымша файлдар
