Spectral model for calculation of radiation characteristics of shock heated gas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The extended version of the previously developed computational procedure SPECTRUM is presented, which allows to calculate the radiation characteristics of a shock-heated gas, taking into account the decrease in the radiation intensity in an absorbing medium. The procedure is based on line-by-line calculation of the emission and absorption spectra of atoms and molecules that make up the gas mixture under study. When calculating the emission spectra of atoms and molecules, the values of spectroscopic constants were taken from known databases. The results of calculating the time-integrated spectral characteristics of shock-heated air are compared with the available experimental data obtained in the ultraviolet, visible, and infrared regions of the spectrum.

Full Text

Restricted Access

About the authors

N. G. Bykova

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Russian Federation, Moscow

A. L. Kusov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Russian Federation, Moscow

P. V. Kozlov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Russian Federation, Moscow

G. Ya. Gerasimov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Russian Federation, Moscow

V. Yu. Levashov

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: vyl69@mail.ru
Russian Federation, Moscow

I. E. Zabelinsky

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Russian Federation, Moscow

References

  1. Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
  2. Zhao Y., Huang H. // Ibid. 2020. V. 169. P. 84.
  3. Surzhikov S.T. // Rus. J. Phys. Chem. B 2010. V. 4. P. 613.
  4. Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
  5. Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. No. 100607.
  6. Zabelinskii I.E., Kozlov P.V., Akimov Yu.V., Bykoba N.G., Gerasimov G.Ya., Tunik Yu.V., Levashov V.Yu. // Rus. J. Phys. Chem. B 2021. V. 15. P. 963.
  7. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B 2022. V. 16. P. 642.
  8. Whiting E., Park C., Liu Y., Arnold J., Paterson J. // NASA Ref. Publ. 1996. № 1389.
  9. Johnston C.O., Hollis B.R., Sutton K. // J. Spacecraft Rockets. 2008. V. 45. № 5. P. 865.
  10. Kumar N., Bansal A. // Acta Astronaut. 2023. V. 205. P. 172.
  11. Johnston C.O., Hollis B.R., Sutton K. // J. Spacecr. Rockets. 2008. V. 45. P. 879.
  12. Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transf. 2016. V. 30. P. 197.
  13. Karpuzcu I.T., Jouffray M.P., Levin D.A. // J. Thermophys. Heat Transf. 2022. V. 36. P. 982.
  14. Du Y.W., Sun S.R., Tan M.J et al. // Acta Astronaut. 2022. V. 193. P. 521.
  15. Dikalyuk A.S., Surzhikov S.T., Kozlov P.V., Shatalov O.P., Romanenko Y.V. AIAA Paper. 2013. № 2013–2505.
  16. Umanskii S.Y., Adamson S.O., Vetchinkin A.S., Deminskii M.A., Olkhov O.A., Chaikina Y.A., Shushin A.I., Golubkov M.G. // Rus. J. Phys. Chem. B 2023. V. 7. P. 346.
  17. Zhu T., Li Z., Levin D.A. // J. Thermophys. Heat Transfer. 2014. V. 28. P. 623.
  18. Gimelshein S.F., Wysong I.J., Fangman A.J. et al. // Ibid. 2022. V. 36. P. 870.
  19. Kozlov P.V., Kusov A.L., Bykova N.G., Zabelinskii I.E., Levashov V.Yu., Gerasimov G.Ya. // Rus. J. Phys. Chem. 2023. V. 17. P. 456.
  20. Bykova N.G., Kuznetsova L.A. // Opt. Spectrosc. 2008. V. 105. P. 668.
  21. Wayne R.P. Principles and Applications of Photochemistry. Oxford University Press, Oxford, 1088.
  22. Nordebo S. // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 270. № 107715.
  23. Surzhikov S.T. AIAA Paper. 2002. № 2002–2898.
  24. NIST Atomic Spectra Database, Ver. 5.10. Gaithersburg: NIST, 2021.
  25. https://doi.org/10.18434/T4W30F
  26. Arnold J.O., Whiting E.E., Lyle G.C. // J. Quant. Spectrosc. Radiat. Transf. 1969. V. 9. P. 775.
  27. Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. Nauka, Moscow, 1980.
  28. Kuznetsova L.A., Surzhikov S.T. // Math. Model. 1998. V. 36. № 5. P. 15.
  29. Glushko V.P. (Ed.). Thermodynamic Properties of Individual Substances, V. II. Nauka, Moscow, 1979.
  30. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 57. P. 780.
  31. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 58. P. 573.
  32. Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. № 4. P. 1.
  33. Johnston C.O. AIAA Paper. 2008. № 2008–1245.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oscillator strengths of the radiation band system: a – N₂(2+) and b – N⁺₂(1–).

Download (125KB)
3. Fig. 2. Comparison of the calculated (1) and experimental (2) spectrograms of the air radiation power in the ultraviolet and visible regions of the spectrum at VSW = 10 km/s.

Download (81KB)
4. Fig. 2. Comparison of the calculated (1) and experimental (2) spectrograms of the air radiation power in the ultraviolet and visible regions of the spectrum at VSW = 10 km/s.

Download (77KB)
5. Fig. 4. Air emission spectrum with high spectral resolution in the wavelength range λ = 335–360 nm at VSW = 10.0 km/s: 1 – N₂(2+); 2 – N⁺₂ (1–); 3 – CN; 4 – DDST-M experiment.

Download (156KB)
6. Fig. 5. Comparison of the calculation results (1) of the radiation power of shock-heated air in the visible and near infrared regions of the spectrum with experimental data (2) at VSW = 10 km/s.

Download (101KB)
7. Fig. 6. Air emission spectrum with high spectral resolution in the wavelength range λ = 850–875 nm at VSW = 10.0 km/s: 1 – calculation results, 2 – experimental data.

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences