Еffect of light spectrum on elastic-mechanical properties of sclera and myopia development

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of a study of spectrum-induced myopia using a model of quail maturation. Using acoustic microscopy methods in the native state, the geometric dimensions of the structural elements of the eye involved in focusing the optical system were determined, and the patterns of their changes as the body grew and during emmetropization were identified. Particular emphasis was placed on the composition, structure and mechanical properties of the sclera, as the main supporting tissue of the eye, responsible for its shape and size.

全文:

受限制的访问

作者简介

N. Trofimova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

E. Khramtsova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

Yu. Petronyuk

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

K. Antipova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

A. Krupnin

NRC “Kurchatov Institute”

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

A. Ratnovskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

V. Sokolova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

E. Mednikova

Institute of Biomedical Problems, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

T. Guryeva

Institute of Biomedical Problems, Russian Academy of Sciences

Email: ntrofimova@mail.ru
俄罗斯联邦, Moscow

参考

  1. D. Troilo E. L, Smith 3rd, D. L. Nickla et al., Invest. ophthalmol.vis.sci., 60, M31–M88 (2019). https://doi.org/10.1167/iovs.18-25967
  2. J. Wallman & J. Winawer, Neuron, 43, 447–468 (2004).
  3. T. Kusakari, T. Sato, T.Tokoro, Exp Eye Res.. 73, З533-46 (2001). https://doi.org/10.1006/exer.2001.1064
  4. C.E. Wisely, J.A. Sayed, H. Tamez, Prog. Retin. Eye Res. 61, 72–97 (2017). https://doi.org/10.1016/j.preteyeres.2017.06.004
  5. P.P. Zak, A.V. Zykova, N.N.Trofimova and A.E.Abu Khamidakh, Dok. Biol. Sci. 10, 2010297-9 (2010). https://doi.org/10.1134/S0012496610050017
  6. T. Tokoro, Nippon Ganka Gakkai Zasshi. 98, 1213-37 (1994)
  7. T. Kusakari, T. Sato & T. Tokoro, Exp. eye res., 64(3), 465–476 (1997). https://doi.org/10.1006/exer.1996.0242
  8. J.R. Phillips, M. Khalaj & N.A. McBrien, Invest. Ophthalmol. & vis. Sci. 41, 2028–2034 (2000). https://doi.org/10.1016/j.neuron.2004.08.008
  9. R.P. Najjar, J.M. Chao De La Barca, V.A. Barathi et al., Sci Rep . 7, 7586 (2021). https://doi.org/10.1038/s41598-021-87201-2
  10. F.J. Rucker, J. Wallman, J. of vision. 12, 23 (2012). https://doi.org/10.1167/12.6.23
  11. M. Pigireva, G. Afanasiev, Quail farming. (М. 1989) (in Russian).
  12. N.N. Trofimova, Yu.S. Petronyuk, T.S. Guryeva, et al., Neurosc.&Behavioral Physiol. 53, 148–153, (2023). https://doi.org/10.1007/s11055-023-01399-4
  13. Yu.S. Petronyuk, N.N. Trofimova, P.P. Zak et al., Russian Journal of Phys. Chem. B. 16(1), 97-102 (2022). https://doi.org/10.1134/S1990793122010249
  14. E. Khramtsova, S. Krasheninnikov, Yu. Petronyuk et al., Current issues in biological physics and chemistry, 5, 2, 331-334 (2020). ISSN 2499-9962.
  15. Yu. Petronyuk, E. Khramtsova, V. Levin et al., News of the RAS. Physical series. 84, 799-802 (2020).
  16. C. Passmann and H. Ermert, Proceedings of IEEE Ultrasonics Symposium, Cannes, France, 1994. V. 3. P. 1661–1664. https://doi.org/10.1109/ULTSYM.1994.401909
  17. K. Hill, G. Ter Haar, J. Bember, Ultrasound in medicine. Ed. O. Sapojnikov (M.: Physmatlit, 2008) (in Russian).
  18. G. Roskin, L. Levinson, Microscopic technique, 3-ed. (M: Sovetskaya nauka, 1957) (in Russian).
  19. F. Schaeffel, M. Bartmann, G. Hagel, E. Zrenner, Vis. Res. 35, 1247-64 (1995)
  20. V. Anisimov, Advances in Physiological Sciences. 39, 40-65 (2008) (in Russian).
  21. I. K. Larin, Russian Journal of Physical Chemistry B. 17, 244–250 (2023). https://doi.org/10.1134/s1990793123010074
  22. C. Boote, I.A. Sigal, R. Grytz et al., Prog.in ret.&eye res. 74, 100773 (2020). https://doi.org/10.1016/j.preteyeres.2019.100773
  23. C. Wildsoet, J.Wallman, et al., Vis. Res. 35, 1175-94 (1995). https://doi.org/10.1016/0042-6989(94)00233-c. PMID: 7610579
  24. O.A. Bogoslovskaya, I.P. Olkhovskaya, G.S Nechitailo., N.N Glushchenko, Russian Journal of Physical Chemistry B. 16(6), 1141–1146 (2022). https://doi.org/10.1134/S199079312206015X
  25. M.A. Yakovlevaa A.Sh. Radchenko, A.A. Kostyukov et al., Russian Journal of Physical Chemistry B. 16(1), 90-96 (2022). https://doi.org/10.1134/S199079312201033X

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spectra of the used lamps: yellow (1) and blue (2) with maxima at λmax = 560 and blue – λmax = 450 nm, respectively.

下载 (26KB)
3. Fig. 2. Acoustic images of the quail eye obtained by ultrasound microscopy: 1 – anteroposterior axis, 2 – cornea, 3 – anterior chamber, 4 – lens, 5 – chorioretinal layer, 6 – sclera. Scale bar – 1 mm.

下载 (424KB)
4. Fig. 3. Structural changes in the quail eye, obtained by ultrasound microscopy in the period of 10–45 days of development. White columns correspond to the group of physiological yellow illumination, gray ones – blue.

下载 (165KB)
5. Fig. 4. Deformation curves of the quail sclera on the 10th (1), 25th (2) and 45th day (3) of development under blue (a) and yellow (b) illumination.

下载 (65KB)
6. Fig. 5. Optical images of the sclera of a quail on the 45th day of development under blue (a) and yellow (b) illumination.

下载 (197KB)

版权所有 © Russian Academy of Sciences, 2024