Еffect of light spectrum on elastic-mechanical properties of sclera and myopia development

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of a study of spectrum-induced myopia using a model of quail maturation. Using acoustic microscopy methods in the native state, the geometric dimensions of the structural elements of the eye involved in focusing the optical system were determined, and the patterns of their changes as the body grew and during emmetropization were identified. Particular emphasis was placed on the composition, structure and mechanical properties of the sclera, as the main supporting tissue of the eye, responsible for its shape and size.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Trofimova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ntrofimova@mail.ru
Ресей, Moscow

E. Khramtsova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

Yu. Petronyuk

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

K. Antipova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

A. Krupnin

NRC “Kurchatov Institute”

Email: ntrofimova@mail.ru
Ресей, Moscow

A. Ratnovskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

V. Sokolova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

E. Mednikova

Institute of Biomedical Problems, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

T. Guryeva

Institute of Biomedical Problems, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. D. Troilo E. L, Smith 3rd, D. L. Nickla et al., Invest. ophthalmol.vis.sci., 60, M31–M88 (2019). https://doi.org/10.1167/iovs.18-25967
  2. J. Wallman & J. Winawer, Neuron, 43, 447–468 (2004).
  3. T. Kusakari, T. Sato, T.Tokoro, Exp Eye Res.. 73, З533-46 (2001). https://doi.org/10.1006/exer.2001.1064
  4. C.E. Wisely, J.A. Sayed, H. Tamez, Prog. Retin. Eye Res. 61, 72–97 (2017). https://doi.org/10.1016/j.preteyeres.2017.06.004
  5. P.P. Zak, A.V. Zykova, N.N.Trofimova and A.E.Abu Khamidakh, Dok. Biol. Sci. 10, 2010297-9 (2010). https://doi.org/10.1134/S0012496610050017
  6. T. Tokoro, Nippon Ganka Gakkai Zasshi. 98, 1213-37 (1994)
  7. T. Kusakari, T. Sato & T. Tokoro, Exp. eye res., 64(3), 465–476 (1997). https://doi.org/10.1006/exer.1996.0242
  8. J.R. Phillips, M. Khalaj & N.A. McBrien, Invest. Ophthalmol. & vis. Sci. 41, 2028–2034 (2000). https://doi.org/10.1016/j.neuron.2004.08.008
  9. R.P. Najjar, J.M. Chao De La Barca, V.A. Barathi et al., Sci Rep . 7, 7586 (2021). https://doi.org/10.1038/s41598-021-87201-2
  10. F.J. Rucker, J. Wallman, J. of vision. 12, 23 (2012). https://doi.org/10.1167/12.6.23
  11. M. Pigireva, G. Afanasiev, Quail farming. (М. 1989) (in Russian).
  12. N.N. Trofimova, Yu.S. Petronyuk, T.S. Guryeva, et al., Neurosc.&Behavioral Physiol. 53, 148–153, (2023). https://doi.org/10.1007/s11055-023-01399-4
  13. Yu.S. Petronyuk, N.N. Trofimova, P.P. Zak et al., Russian Journal of Phys. Chem. B. 16(1), 97-102 (2022). https://doi.org/10.1134/S1990793122010249
  14. E. Khramtsova, S. Krasheninnikov, Yu. Petronyuk et al., Current issues in biological physics and chemistry, 5, 2, 331-334 (2020). ISSN 2499-9962.
  15. Yu. Petronyuk, E. Khramtsova, V. Levin et al., News of the RAS. Physical series. 84, 799-802 (2020).
  16. C. Passmann and H. Ermert, Proceedings of IEEE Ultrasonics Symposium, Cannes, France, 1994. V. 3. P. 1661–1664. https://doi.org/10.1109/ULTSYM.1994.401909
  17. K. Hill, G. Ter Haar, J. Bember, Ultrasound in medicine. Ed. O. Sapojnikov (M.: Physmatlit, 2008) (in Russian).
  18. G. Roskin, L. Levinson, Microscopic technique, 3-ed. (M: Sovetskaya nauka, 1957) (in Russian).
  19. F. Schaeffel, M. Bartmann, G. Hagel, E. Zrenner, Vis. Res. 35, 1247-64 (1995)
  20. V. Anisimov, Advances in Physiological Sciences. 39, 40-65 (2008) (in Russian).
  21. I. K. Larin, Russian Journal of Physical Chemistry B. 17, 244–250 (2023). https://doi.org/10.1134/s1990793123010074
  22. C. Boote, I.A. Sigal, R. Grytz et al., Prog.in ret.&eye res. 74, 100773 (2020). https://doi.org/10.1016/j.preteyeres.2019.100773
  23. C. Wildsoet, J.Wallman, et al., Vis. Res. 35, 1175-94 (1995). https://doi.org/10.1016/0042-6989(94)00233-c. PMID: 7610579
  24. O.A. Bogoslovskaya, I.P. Olkhovskaya, G.S Nechitailo., N.N Glushchenko, Russian Journal of Physical Chemistry B. 16(6), 1141–1146 (2022). https://doi.org/10.1134/S199079312206015X
  25. M.A. Yakovlevaa A.Sh. Radchenko, A.A. Kostyukov et al., Russian Journal of Physical Chemistry B. 16(1), 90-96 (2022). https://doi.org/10.1134/S199079312201033X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Spectra of the used lamps: yellow (1) and blue (2) with maxima at λmax = 560 and blue – λmax = 450 nm, respectively.

Жүктеу (26KB)
3. Fig. 2. Acoustic images of the quail eye obtained by ultrasound microscopy: 1 – anteroposterior axis, 2 – cornea, 3 – anterior chamber, 4 – lens, 5 – chorioretinal layer, 6 – sclera. Scale bar – 1 mm.

Жүктеу (424KB)
4. Fig. 3. Structural changes in the quail eye, obtained by ultrasound microscopy in the period of 10–45 days of development. White columns correspond to the group of physiological yellow illumination, gray ones – blue.

Жүктеу (165KB)
5. Fig. 4. Deformation curves of the quail sclera on the 10th (1), 25th (2) and 45th day (3) of development under blue (a) and yellow (b) illumination.

Жүктеу (65KB)
6. Fig. 5. Optical images of the sclera of a quail on the 45th day of development under blue (a) and yellow (b) illumination.

Жүктеу (197KB)

© Russian Academy of Sciences, 2024