Quantum-chemical calculations of the enthalpy of formation for 5/6/5 tricyclic tetrazine derivatives annelated with nitrotriazoles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the study of the calculated physicochemical properties of new high-energy 5/6/5 tricyclic structures, which are 1,2,3,4- or 1,2,4,5-tetrazines, fused with a pair of 1H-1,2,4-, 4H-1,2,4- or 1H-1,2,3-triazoles. Values of the enthalpy of formation in the gaseous phase have been determined by high-performance quantum-chemical calculations (within Gaussian 09 program package) using various methods for solving the stationary Schrödinger equation, including G4, G4MP2, ωB97XD/aug-cc-pVTZ, CBS-APNO, CBS-QB3, CBS-4M, B3LYP/6-311+G(2d,p), M062X/6-311+G(2d,p). The results of calculations obtained by the methods of atomization and isogyric reactions have been analysed. Various calculation methods have been compared in terms of accuracy and time consumption.

Full Text

Restricted Access

About the authors

V. M. Volokhov

Institute of problems of chemical physics Russian academy of sciences

Author for correspondence.
Email: aes@icp.ac.ru
Russian Federation, Chernogolovka

V. V. Parakhin

N.D. Zelinskiy Institute of organic chemistry Russian academy of sciences

Email: aes@icp.ac.ru
Russian Federation, Moscow

E. S. Amosova

Institute of problems of chemical physics Russian academy of sciences

Email: aes@icp.ac.ru
Russian Federation, Chernogolovka

A. V. Volokhov

Institute of problems of chemical physics Russian academy of sciences

Email: aes@icp.ac.ru
Russian Federation, Chernogolovka

D. B. Lempert

Institute of problems of chemical physics Russian academy of sciences

Email: aes@icp.ac.ru
Russian Federation, Chernogolovka

T. S. Zyubina

Institute of problems of chemical physics Russian academy of sciences

Email: aes@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. P Yin., Q. Zhang, J. M. Shreeve, Acc. Chem. Res. 49, 4 (2016). https://doi.org/10.1021/acs.accounts.5b00477
  2. Y. Qu, S. P. Babailov, J. Mater. Chem. A. 6, 1915 (2018). https://doi.org/10.1039/C7TA09593
  3. C. Yongjin, B. Shuhong, Johnson Matthey Technol. Rev. 63, 51 (2019). https://doi.org/10.1595/205651319x15421043166627
  4. L. L. Fershtat, N. N. Makhova, ChemPlusChem. 85, 12 (2020). https://doi.org/10.1002/cplu.201900542
  5. H. Gao, Q. Zhang, J. M. Shreeve, J. Mater. Chem. A. 8, 4193 (2020). https://doi.org/10.1039/C9TA12704F
  6. J. Zhang, J. Zhou, F. Bi, B. Wang, Chin. Chem. Lett. 31, 2375 (2020). https://doi.org/10.1016/j.cclet.2020.01.026
  7. J. Zhou, J. L. Zhang, B. Z. Wang et al., FirePhysChem. 2, 83 (2022). https://doi.org/10.1016/j.fpc.2021.09.005
  8. J. Tang, H. Yang, Y. Cui, G. Cheng, Mater. Chem. Front. 5, 7108 (2021). https://doi.org/10.1039/D1QM00916H
  9. A. M. Churakov, A. A. Voronin, M. S. Klenov, V. A. Tartakovsky, Other Tetrazines and Pentazines in Comprehensive Heterocyclic Chemistry IV, ed. D. S. Black, J. Cossy, C. V. Stevens. Amsterdam: Elsevier Science 9 640 (2022). https://doi.org/10.1016/B978-0-12-818655-8.00064-0
  10. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovsky, Russ. Chem. Rev. 89, 1 (2020). https://doi.org/ 10.1070/RCR4908
  11. S. G. Zlotin, A. M. Churakov, M. P. Egorov et al., Mendeleev Commun. 31, 731 (2021). https://doi.org/10.1016/j.mencom.2021.11.001
  12. A. O. Shvets, A. A. Konnov, M. S. Klenov et al., Russ. Chem. Bull., Int. Ed. 69, 739 (2020). https://doi.org/10.1007/s11172-020-2826-3
  13. D. A. Gulyaev, M. S. Klenov, A. M. Churakov et al., Russ. Chem. Bull., Int. Ed. 70, 1599 (2021). https://doi.org/10.1007/s11172-021-3256-6
  14. I. N. Zyuzin, V. M. Volokhov, D. B. Lempert, Russ. J. Phys. Chem. B (Engl. Transl.). 15, 810 (2021). https://doi.org/10.1134/S1990793121050109
  15. I. N. Zyuzin, I. Yu. Gudkova, D. B. Lempert, Russ. J. Phys. Chem. B (Engl. Transl.). 15, 611 (2021). https://doi.org/10.1134/S1990793121040138
  16. V. V. Zakharov, N. V. Chukanov, G. V. Shilov, et al., Russ. J. Phys. Chem. B (Engl. Transl.). 15, 622 (2021). https://doi.org/10.1134/S1990793121040126
  17. L.L. Fershtat // FirePhysChem. (China). 3, 78 (2023). https://doi.org/10.1016/j.foc.2022.09.005
  18. D. E. Chavez, J. C. Bottaro, M. Petrie, D. A. Parrish, Angew. Chem. Int. Ed. 54, 12973 (2015). https://doi.org/10.1002/anie.201506744
  19. Y. Tang, D. Kumar, J. M. Shreeve, J. Am. Chem. Soc. 139, 13684 (2017). https://doi.org/10.1021/jacs.7b08789
  20. Y. X. Tang, C. L. He, P. Yin et al., Eur. J. Org. Chem. 19, 2273 (2018). https://doi.org/10.1002/ejoc.201800347
  21. G.F. Rudakov et al. // Chem. Eng. J.2022. V. 450. P. 138073; https://doi.org/10.1016/j.cej.2022.138073
  22. V. M. Volokhov, E. S. Amosova, A. V. Volokhov et al., Comput. Theor. Chem. 1209, 113608 (2022). https://doi.org/10.1016/j.comptc.2022.113608
  23. L. A. Curtiss, P. C. Redfern, K., J. Raghavachari Chem. Phys. 126, 084108 (2007). https://doi.org/10.1063/1.2436888
  24. A. Nirwan, V. D. Ghule, Theor. Chem. Acc. 137, 1 (2018). https://doi.org/10.1007/s00214-018-2300-6
  25. M. A. Suntsova, O. V. Dorofeeva, J. Chem. Eng. Data. 61, 313 (2016). https://doi.org/10.1021/acs.jced.5b00558
  26. J. Glorian, K. T. Han, S. Braun, B. Baschung, Propellants Explos. Pyrotech. 46, 124 (2021). https://doi.org/10.1002/prep.202000187
  27. K. K. Irikura, D. J. Frurip, Computational Thermochemistry. ACS Symposium Series 667. Washington: American Chemical Society (1998).
  28. Parallel Computational Technologies. PCT 2020. Communications in Computer and Information Science, Eds L. Sokolinsky, M. Zymbler. Springer, Cham. 1263, 291 (2020). https://doi.org/10.1007/978-3-030-55326-5_21
  29. Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, Eds V. Voevodin, S. Sobolev. Springer, Cham. 1331, 310 (2020). https://doi.org/10.1007/978-3-030-64616-5_27
  30. D. B. Lempert, V. M. Volokhov, I. N. Zyuzin et al., Russ. J. Appl. Chem. (Engl. Transl.). 93, 1852 (2020). https://doi.org/10.1134/S1070427220120071
  31. V. M. Volokhov, E. S. Amosova, A. V. Volokhov et al., Supercomput. Front. Innov. 7, 68 (2020). https://doi.org/10.14529/jsfi200406
  32. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov et al., Russ. J. Phys. Chem. B (Engl. Transl.) 15, 12 (2021). https://doi.org/10.1134/S1990793121010127
  33. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov et al., Russ. J. Inorg. Chem. (Engl. Transl.). 66, 78 (2021).
  34. https://doi.org/ 10.1134/S0036023621010113
  35. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464906
  36. B. J. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 98, 5612 (1993). https://doi.org/10.1063/1.464906
  37. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://doi.org/10.1007/s00214-007-0310-x
  38. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). https://doi.org/10.1039/B810189B
  39. L. A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 127, 124105 (2007). https://doi.org/10.1063/1.2770701
  40. L. A.Curtiss, P.C.Redfern, K. Raghavachari, Comput. Mol. Sci. 1, 810 (2011). V. 1. P. 810. https://doi.org/10.1002/wcms.59
  41. J. A. Montgomery Jr., M. J. Frisch, et al., J. Chem. Phys. 112, 6532 (2000). https://doi.org/10.1063/1.481224
  42. G. A Petersson., D.K. Malick, W.G. Wilson, et al., J. Chem. Phys. 109, 10570 (1998); https://doi.org/10.1063/1.477794
  43. E. F. Byrd, B. M. Rice, J. Phys. Chem. A. 110, 1005 (2006). https://doi.org/10.1021/jp0536192
  44. E. F. Byrd, B. M. Rice, J. Phys. Chem. A. 113, 5813 (2009). https://doi.org/10.1021/jp806520b
  45. V. G. Kiselev, C. F. Goldsmith, J. Phys. Chem. A. 123, 9818 (2019). https://doi.org/10.1021/acs.jpca.9b08356
  46. A. Karton, J. M. L. Martin, J. Chem. Phys. 136, 124114 (2012). https://doi.org/10.1063/1.3697678
  47. V. D. Ghule, Comput. Theor. Chem. 992, 92 (2012). https://doi.org/10.1016/j.comptc.2012.05.007
  48. J. Mann, V. D. Ghule, S. Dharavath, Phys. Chem. A. 127, 6467 (2023). https://doi.org/10.1021/0021-9614(89)90060-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bis(triazolo)tetrazine molecules under study.

Download (279KB)
3. Fig. 2. Structures of isomers of the general formula C4N10O4 1a,b–3a,b (from different angles) and their geometric parameters: bond lengths and bond angles (Å, °). Calculations were performed using the B3LYP/6-311+G(2d,p) method.

Download (1MB)
4. Fig. 3. Change in the enthalpy of formation in the gas phase (kJ/mol) in the series of studied isomers 1a,b–3a,b. Calculation method B3LYP/6-311+G(2d,p) - 1, M062X/6-311+G(2d,p) - 2, G4MP2 - 3, G4 - 4, CBS-APNO - 5, CBS-QB3 - 6, ωB97XD/aug-cc-pVTZ - 7, CBS-4M - 8.

Download (391KB)
5. Fig. 4. IR spectra (e is the molar extinction coefficient) of absorption of isomeric structures 1a,b–3a,b.

Download (704KB)
6. Fig. 5. Vectors of atomic displacements for the indicated frequencies (numbers in the figures) of the most intense vibrations of isomeric structures 1a,b–3a,b.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences