Synthesis and characterization of prebiotic composite struvite/kappa-carrageenan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A struvite / kappa-carrageenan composite was synthesized from an aqueous solution of a polysaccharide and inorganic precursors. The phase, elemental composition and sizes of composite particles in an aqueous colloidal solution have been studied by X-ray phase analysis, X-ray energy dispersive analysis, and dynamic light scattering. It has been shown that this promising prebiotic composite is capable of producing diffusion-mobile aqueous colloidal solutions with varying degrees of association of structural elements, which is convenient for use in biomedicine.

Full Text

Restricted Access

About the authors

T. V. Kon’kova

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk

N. V. Klushina

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk

A. V. Romashchenko

Институт цитологии и генетики Сибирского отделения Российской академии наук

Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk

E. A. Losev

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

A. D. Vedeeva

Novosibirsk State Pedagogical University

Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk

B. G. Sukhov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: boris_sukhov@mail.ru
Russian Federation, Novosibirsk

References

  1. Wedamulla N.E., Wijesinghe W.A.J.P. // Trends Carbohydr. Res. 2021. V. 13. № 2. P. 35;
  2. Lovegrove A., Edwards C.H., De Noni I. et al. // Crit. Rev. Food Sci. Nutr. 2017. V. 57. № 2. Р. 237; https://doi.org/10.1080/10408398.2014.939263
  3. Pathak H., Prasad A. // J. Textile Sci. Eng. 2014. V.4. № 6. P. 172; https://doi.org/10.4172/2165- 8064.1000172
  4. Srivastava R.K., Sushant P., Sathvik A.S. et al. Food, Medical, and Environmental Applications of Polysaccharides. Elsevier, 2021. P. 511; https://doi.org/10.1016/B978-0-12-819239-9.00022-1
  5. Fernandes M., Padrao J., Ribeiro A. I. et al. // Nanomaterials (Basel). 2022. V. 12. № 6. P. 1006; https://doi.org/10.3390/nano12061006
  6. Shelton M.C. // Kirk-Othmer Encycl. Chem. Techn. 2000. V. 5. P. 394.
  7. Della Rosa G., Ruggeri C., Aloisi A. et al. // Poly saccharides. 2021. V. 2. Р. 311; https://doi.org/10.3390/ polysaccharides2020021
  8. El-Boubbou K., Huang X. // Curr. Med. Chem. 2011. V. 18. № 14. Р. 2060; https://doi.org/10.2174/092986711795656144
  9. Trofimov B.A., Sukhov B.G., Aleksandrova G.P. et al. // Doklady Akademii Nauk. 2003. V. 393. P. 634.
  10. Lesnichaya M.V., Shendrik R.Yu, Sukhov B.G. // J. Lumin. 2019. V. 211. P. 305; https://doi.org/10.1016/j.jlumin.2019.03.056
  11. Lesnichaya M., Sukhov B., Shendrik R. et al. // IET Nanobiotechnol. 2020. V. 14. No 6. P. 519; https://doi.org/10.1049/iet-nbt.2020.0023
  12. Blachowicz T., Ehrmann A. // Appl. Sci. 2021. V. 11. № 16. P.7510; https://doi.org/10.3390/app11167510
  13. Uthaman S., Lee S.J., Cherukula K. et al. // BioMed Res. 2015. P 14; https://doi.org/10.1155/2015/959175
  14. Ikai T. // Polym. J. 2017. V. 49. № 4. Р. 355; https://doi.org/10.1038/pj.2016.123
  15. Ding P., Chang B., Qing G. et al. // Sci. China Chem. 2014. V. 57. № 11. Р. 1492; https://doi.org/10.1007/s11426-014-5206-8
  16. Lesnichaya M.V., Sukhov B.G., Aleksandrova G.P. et al. // Carbohydr. Polym. 2017. V. 175. P. 18; https://doi.org/10.1016/j.carbpol.2017.07.040
  17. Trofimov B.A., Sukhov B.G., Nosyreva V.V. et al. // Dokl. Chem. 2007. V. 417. P. 261.
  18. Zong T.-X., Silveira A.P., Morais J.A.V. et al. // Nanomaterials. 2022. V. 12. № 1. P. 1855; https://doi.org/10.3390/ nano12111855
  19. Mamun M.M., Sorinolu A.J., Munir M. et al. // Front. Chem. 2021. V. 9. P. 687660; https://doi.org/10.3389/fchem.2021.687660
  20. Ermini M.L., Voliani V. // ACS Nano. 2021. V. 15. P. 6008; https://doi.org/10.1021/acsnano.0c10756
  21. Ganenko T.V., Kostyro Ya.A., Sukhov B.G. et al. Silver nanocomposite based on sulfated arabinogalactan with antimicrobial and antithrombotic activity, and method for its preparation // Patent of Russia. 2012. № 2462254.
  22. Aleksandrova G.P., Grishchenko L.A., Bogomyakov A.S. et al. // Russ. Chem. Bull. 2010. V. 59. P. 2318. https://doi.org/10.1007/s11172-010-0394-7
  23. Petrova M.V., Kiryutin A.S., Savelov A.A. et al. // Appl. Magn. Res. 2011. V. 41. P. 525; https://doi.org/10.1007/s00723-011-0241-5
  24. Shurygina I.A., Rodionova L.V., Shurygin M.G. et al. // Bull. Russ. Acad. Sci.: Phys. 2015. V. 79. № 2. P. 256. https://doi.org/10.3103/S1062873815020276
  25. Kolesnikova L.I., Karpova E.A., Vlasov B.Ya. et al. // Bull. Exp. Biol. Med. 2015. V. 159. № 2. P. 225. https://doi.org/1007/s10517-015-2928-3
  26. Lesnichaya M.V., Karpova E.A., Sukhov B.G. // Coll. Surf. B. BioInterf. 2021. V. 197. № 111381; https://doi.org/10.1016/j.colsurfb.2020.111381
  27. Sukhov B.G., Ganenko T.V., Pogodaeva N.N. A drug with antitumor activity based on nanobiocomposites of selenium and arabinogalactan and methods for obtaining such nanobiocomposites // Patent of Russia. 2017. № 2614363.
  28. Perfilyeva A.I., Nozhkina O.A., Graskova I.A. et al. // Russ. Chem. Bull. 2018. V. 67. P. 157. https://doi.org/10.1007/s11172-018-2052-4
  29. Papkina A.V., Perfi l’eva A.I., Zhivet’ev M.A. et al. // Dokl. Biol. Sci. 2015. V. 461. P. 239. https://doi.org/10.1134/S001249661501010X
  30. Papkina A.V., Perfileva A.I., Zhivetyev M.A. et al. // Nanotech. Russ. 2015. V. 10. P. 484. https://doi.org/10.1134/S1995078015030131
  31. Perfileva A.I., Tsivileva O.M., Nozhkina O.A. et al. // Nanomaterials. 2021. V. 11. № 9. P. 2274; https://doi.org/10.3390/nano11092274
  32. Perfileva A.I., Nozhkina O.A., Ganenko T.V. et al. // Intern. J. Mol. Sci. 2021. V. 22. № 9. P. 4576; https://doi.org/10.3390/ij ms22094576
  33. Perfileva A.I., Graskova I.A., Sukhov B.G. et al. // Agronomy. 2022. V. 12. № 6. P. 1281; https://doi.org/10.3390/agronomy12061281
  34. Ötle S. Probiotics and Prebiotics in Food, Nutrition and Health / Boca Raton: CRC Press Tailor and Francis Group, 2013.
  35. Sukhov B.G., Pogodaeva N.N., Kuznetsov S.V. // Rus. Chem. Bulletin. 2014. V. 63. P. 2189. https://doi.org/10.1007/s11172-014-0718-0
  36. Shabanova N.M.,. Dzhioev Yu.P, Bukharova E.V. et al. // Bull. East-Sib. NTs SO RAMS. 2014. V. 99. P. 72.
  37. Yurinova G.V., Selivanova D.S., Pristavka A.A. et al. // Izv. VUZov. Appl. Chem. Biotechnol. 2014. V. 9. P. 90.
  38. Lesnichaya M.V., Sukhov B.G., Sapozhnikov A.N. et al. // Dokl. Chem. 2014. V. 457. P. 546. https://doi.org/10.1134/S0012500814080023

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction pattern of the resulting composite.

Download (169KB)
3. Fig. 2. X-ray emission spectrum of the resulting composite.

Download (137KB)
4. Fig. 3. Size distribution of hydrodynamic radii of the resulting composite particles.

Download (67KB)

Copyright (c) 2024 Russian Academy of Sciences