Synthesis and characterization of prebiotic composite struvite/kappa-carrageenan
- Autores: Kon’kova T.V.1, Klushina N.V.1, Romashchenko A.V.2, Losev E.A.1,3,4, Vedeeva A.D.5, Sukhov B.G.1
-
Afiliações:
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
- Институт цитологии и генетики Сибирского отделения Российской академии наук
- Novosibirsk National Research State University
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State Pedagogical University
- Edição: Volume 43, Nº 2 (2024)
- Páginas: 112-118
- Seção: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://cijournal.ru/0207-401X/article/view/674992
- DOI: https://doi.org/10.31857/S0207401X24020123
- EDN: https://elibrary.ru/WGYEMA
- ID: 674992
Citar
Resumo
A struvite / kappa-carrageenan composite was synthesized from an aqueous solution of a polysaccharide and inorganic precursors. The phase, elemental composition and sizes of composite particles in an aqueous colloidal solution have been studied by X-ray phase analysis, X-ray energy dispersive analysis, and dynamic light scattering. It has been shown that this promising prebiotic composite is capable of producing diffusion-mobile aqueous colloidal solutions with varying degrees of association of structural elements, which is convenient for use in biomedicine.
Palavras-chave
Texto integral

Sobre autores
T. Kon’kova
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk
N. Klushina
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk
A. Romashchenko
Институт цитологии и генетики Сибирского отделения Российской академии наук
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk
E. Losev
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk; Novosibirsk; Novosibirsk
A. Vedeeva
Novosibirsk State Pedagogical University
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk
B. Sukhov
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: boris_sukhov@mail.ru
Rússia, Novosibirsk
Bibliografia
- Wedamulla N.E., Wijesinghe W.A.J.P. // Trends Carbohydr. Res. 2021. V. 13. № 2. P. 35;
- Lovegrove A., Edwards C.H., De Noni I. et al. // Crit. Rev. Food Sci. Nutr. 2017. V. 57. № 2. Р. 237; https://doi.org/10.1080/10408398.2014.939263
- Pathak H., Prasad A. // J. Textile Sci. Eng. 2014. V.4. № 6. P. 172; https://doi.org/10.4172/2165- 8064.1000172
- Srivastava R.K., Sushant P., Sathvik A.S. et al. Food, Medical, and Environmental Applications of Polysaccharides. Elsevier, 2021. P. 511; https://doi.org/10.1016/B978-0-12-819239-9.00022-1
- Fernandes M., Padrao J., Ribeiro A. I. et al. // Nanomaterials (Basel). 2022. V. 12. № 6. P. 1006; https://doi.org/10.3390/nano12061006
- Shelton M.C. // Kirk-Othmer Encycl. Chem. Techn. 2000. V. 5. P. 394.
- Della Rosa G., Ruggeri C., Aloisi A. et al. // Poly saccharides. 2021. V. 2. Р. 311; https://doi.org/10.3390/ polysaccharides2020021
- El-Boubbou K., Huang X. // Curr. Med. Chem. 2011. V. 18. № 14. Р. 2060; https://doi.org/10.2174/092986711795656144
- Trofimov B.A., Sukhov B.G., Aleksandrova G.P. et al. // Doklady Akademii Nauk. 2003. V. 393. P. 634.
- Lesnichaya M.V., Shendrik R.Yu, Sukhov B.G. // J. Lumin. 2019. V. 211. P. 305; https://doi.org/10.1016/j.jlumin.2019.03.056
- Lesnichaya M., Sukhov B., Shendrik R. et al. // IET Nanobiotechnol. 2020. V. 14. No 6. P. 519; https://doi.org/10.1049/iet-nbt.2020.0023
- Blachowicz T., Ehrmann A. // Appl. Sci. 2021. V. 11. № 16. P.7510; https://doi.org/10.3390/app11167510
- Uthaman S., Lee S.J., Cherukula K. et al. // BioMed Res. 2015. P 14; https://doi.org/10.1155/2015/959175
- Ikai T. // Polym. J. 2017. V. 49. № 4. Р. 355; https://doi.org/10.1038/pj.2016.123
- Ding P., Chang B., Qing G. et al. // Sci. China Chem. 2014. V. 57. № 11. Р. 1492; https://doi.org/10.1007/s11426-014-5206-8
- Lesnichaya M.V., Sukhov B.G., Aleksandrova G.P. et al. // Carbohydr. Polym. 2017. V. 175. P. 18; https://doi.org/10.1016/j.carbpol.2017.07.040
- Trofimov B.A., Sukhov B.G., Nosyreva V.V. et al. // Dokl. Chem. 2007. V. 417. P. 261.
- Zong T.-X., Silveira A.P., Morais J.A.V. et al. // Nanomaterials. 2022. V. 12. № 1. P. 1855; https://doi.org/10.3390/ nano12111855
- Mamun M.M., Sorinolu A.J., Munir M. et al. // Front. Chem. 2021. V. 9. P. 687660; https://doi.org/10.3389/fchem.2021.687660
- Ermini M.L., Voliani V. // ACS Nano. 2021. V. 15. P. 6008; https://doi.org/10.1021/acsnano.0c10756
- Ganenko T.V., Kostyro Ya.A., Sukhov B.G. et al. Silver nanocomposite based on sulfated arabinogalactan with antimicrobial and antithrombotic activity, and method for its preparation // Patent of Russia. 2012. № 2462254.
- Aleksandrova G.P., Grishchenko L.A., Bogomyakov A.S. et al. // Russ. Chem. Bull. 2010. V. 59. P. 2318. https://doi.org/10.1007/s11172-010-0394-7
- Petrova M.V., Kiryutin A.S., Savelov A.A. et al. // Appl. Magn. Res. 2011. V. 41. P. 525; https://doi.org/10.1007/s00723-011-0241-5
- Shurygina I.A., Rodionova L.V., Shurygin M.G. et al. // Bull. Russ. Acad. Sci.: Phys. 2015. V. 79. № 2. P. 256. https://doi.org/10.3103/S1062873815020276
- Kolesnikova L.I., Karpova E.A., Vlasov B.Ya. et al. // Bull. Exp. Biol. Med. 2015. V. 159. № 2. P. 225. https://doi.org/1007/s10517-015-2928-3
- Lesnichaya M.V., Karpova E.A., Sukhov B.G. // Coll. Surf. B. BioInterf. 2021. V. 197. № 111381; https://doi.org/10.1016/j.colsurfb.2020.111381
- Sukhov B.G., Ganenko T.V., Pogodaeva N.N. A drug with antitumor activity based on nanobiocomposites of selenium and arabinogalactan and methods for obtaining such nanobiocomposites // Patent of Russia. 2017. № 2614363.
- Perfilyeva A.I., Nozhkina O.A., Graskova I.A. et al. // Russ. Chem. Bull. 2018. V. 67. P. 157. https://doi.org/10.1007/s11172-018-2052-4
- Papkina A.V., Perfi l’eva A.I., Zhivet’ev M.A. et al. // Dokl. Biol. Sci. 2015. V. 461. P. 239. https://doi.org/10.1134/S001249661501010X
- Papkina A.V., Perfileva A.I., Zhivetyev M.A. et al. // Nanotech. Russ. 2015. V. 10. P. 484. https://doi.org/10.1134/S1995078015030131
- Perfileva A.I., Tsivileva O.M., Nozhkina O.A. et al. // Nanomaterials. 2021. V. 11. № 9. P. 2274; https://doi.org/10.3390/nano11092274
- Perfileva A.I., Nozhkina O.A., Ganenko T.V. et al. // Intern. J. Mol. Sci. 2021. V. 22. № 9. P. 4576; https://doi.org/10.3390/ij ms22094576
- Perfileva A.I., Graskova I.A., Sukhov B.G. et al. // Agronomy. 2022. V. 12. № 6. P. 1281; https://doi.org/10.3390/agronomy12061281
- Ötle S. Probiotics and Prebiotics in Food, Nutrition and Health / Boca Raton: CRC Press Tailor and Francis Group, 2013.
- Sukhov B.G., Pogodaeva N.N., Kuznetsov S.V. // Rus. Chem. Bulletin. 2014. V. 63. P. 2189. https://doi.org/10.1007/s11172-014-0718-0
- Shabanova N.M.,. Dzhioev Yu.P, Bukharova E.V. et al. // Bull. East-Sib. NTs SO RAMS. 2014. V. 99. P. 72.
- Yurinova G.V., Selivanova D.S., Pristavka A.A. et al. // Izv. VUZov. Appl. Chem. Biotechnol. 2014. V. 9. P. 90.
- Lesnichaya M.V., Sukhov B.G., Sapozhnikov A.N. et al. // Dokl. Chem. 2014. V. 457. P. 546. https://doi.org/10.1134/S0012500814080023
Arquivos suplementares
