The effect of cobalt content and mechanical activation on combustion in the Ni + Al + Co system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of mechanical activation (MA) and cobalt content on the combustion velocity and maximum combustion temperature, elongation of samples during synthesis, the size of composite particles of the mixture after MA, phase composition and morphology of combustion products in the Ni + Al + Co system is investigated in this work. Activation of the Ni + Al + xCo mixture allowed the samples to burn at room temperature, with a cobalt content of up to 50 wt. %. An increase in the cobalt content in Ni + Al + xCo mixtures led to a decrease in the size of composite particles after MA, elongation of product samples and the maximum synthesis temperature. After MA, the elongation of the product samples and combustion velocity increased many times, the maximum synthesis temperature increased. With an increase in the cobalt content in the Ni + Al + Co mixture, combustion velocity first increases (at 10% Co), then decreases. Solid solutions based on NiAl and Ni3Al intermetallides were synthesized by the SHS method.

Full Text

Restricted Access

About the authors

N. A. Kochetov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: kolyan_kochetov@mail.ru
Russian Federation, Chernogolovka

I. D. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: kolyan_kochetov@mail.ru
Russian Federation, Chernogolovka

References

  1. S. C. Kelly, N.N. Thadhani, J. Appl. Phys. 119, 95903 (2016). https://doi.org/10.1063/1.4942931
  2. Yu. S. Pogozhev, V. N. Sanin, D. M. Ikornikov, et al., Int. J. Self-Propag. High-Temp. Synth. 25 (3), 186 (2016). https://doi.org/10.3103/S1061386216030092
  3. V. N. Sanin, D. M. Ikornikov, D.E. Andreev, et al., Int. J. Self-Propag. High-Temp. Synth. 23 (4), 232 (2014). https://doi.org/10.3103/S1061386214040098
  4. B. S. Seplyarskii, N. I. Abzalov, R. A. Kochetkov, et al., Russ. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
  5. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
  6. J. Wang, J. Alloys Compd. 456, 139 (2008).
  7. N. A. Kochetov, B. S. Seplyarskii, Russ. J. Phys. Chem. B 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079.
  8. N. A. Kochetov, A. E. Sychev, Combust. Explos. Shock Waves 56 (5), 520 (2020). https://doi.org/10.1134/S0010508220050020
  9. H. Zoz, H. Ren, InterCeram: Int. Ceram. Rev. 49 (1), 24 (2000).
  10. Сh-K. Lin, Sh-Sh. Hong, P-Y. Lee, Intermetallics 8 (9–11), 1043 (2000). https://doi.org/10.1016/S0966-9795(00)00039-X
  11. N. A. Kochetov, Russ. J. Phys. Chem. B 16 (4), 621 (2022). https://doi.org/10.1134/S1990793122040078
  12. N. A. Kochetov, Combust. Explos. Shock Waves 58 (6), 665 (2022). https://doi.org/10.1134/S0010508222060041
  13. T. Graf, C. Felser, S. S. P. Parkin, Prog. Solid State Chem. 39 (1), 1 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  14. W. Lin, A. J. Freeman, Phys. Rev. B. 45 (1), 61 (1992). https://doi.org/10.1103/PhysRevB.45.611992
  15. Y. Kimura, S. Miura, T. Suzuki, et al., Mater. Transact. 35 (11), 800 (1994). https://doi.org/10.2320/matertrans1989.35.800
  16. Y. Kimura, E. H. Lee, C.T. Liu, Mater. Transact. 36 (8), 1031 (1995). https://doi.org/10.2320/matertrans1989.36.1031
  17. Y. Tanaka, T. Ohmori, K. Oikawa, et al., Mater. Transact. 45 (2), 427 (2004). https://doi.org/10.2320/matertrans.45.427
  18. K. Oikawa, T. Ota, F. Gejima, et al., Mater. Transact. 42 (11), 2472 (2001). https://doi.org/10.2320/matertrans.42.2472
  19. J. Liu and J. G. Li, Mater. Sci. Eng. A. 454-455, 423 (2007). https://doi.org/10.1016/j.msea.2006.11.085
  20. M. A. Korchagin, Combust. Explos. Shock Waves 51 (5), 578 (2015). https://doi.org/10.1134/S0010508215050093
  21. N. A. Kochetov, B. S. Seplyarskii, Combust. Explos. Shock Waves 56 (3), 308 (2020). https://doi.org/10.1134/S0010508220030077
  22. N. A. Kochetov, B. S. Seplyarskii, Russ. J. Phys. Chem. B 17 (2), 381 (2023). https://doi.org/10.1134/S1990793123020082
  23. A. S. Rogachev, A. S. Mukas’yan Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics. Moscow: Fizmatlit (2012). [in Russian].
  24. O. K. Kamynina, A. S. Rogachev, A. E. Sytschev, et al., Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).
  25. O. K. Kamynina, A. S. Rogachev, L. M. Umarov, et al., Combust. Explos. Shock Waves, 39 (5), 548 (2003), https://doi.org/10.1023/A:1026161818701
  26. N. A. Kochetov, Combust. Explos. Shock Waves 57 (6), 663 (2021). https://doi.org/10.1134/S0010508222060041
  27. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210 (2016). https://doi.org/10.3103/S1061386216040105
  28. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90 (2015). https://doi.org/10.3103/S1061386215020107
  29. B. S. Seplyarskii, Dokl. Phys. Chem. 396 (4–6), 130 (2004).
  30. A. S. Rogachev, Combust. Explos. Shock Waves 39 (2), 150 (2003). https://doi.org/10.1023/A:1022956915794

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of X-ray phase analysis of activated mixtures Ni + Al + xCo at x = 10 (a) and 50 wt.% (b). Numbers indicate the peak reflections of the following phases: 1 – Ni, 2 – Al, 3 – Co.

Download (98KB)
3. Fig. 2. Dependence of the average particle size of the activated mixture Ni + Al + xCo on the cobalt content.

Download (74KB)
4. Fig. 3. Photographs of samples of combustion products of the initial Ni + Al mixture (a) and a partially burned sample of the Ni + Al + 10%Co mixture (b).

Download (107KB)
5. Fig. 4. Dependence of the combustion rate of samples from the initial (○) and activated (■) mixture of Ni + Al + xCo on the cobalt content.

Download (78KB)
6. Fig. 5. Dependence of the relative elongation of the burnt sample on the cobalt content from the initial (○) and activated (■) mixture Ni + Al + xCo.

Download (78KB)
7. Fig. 6. Dependence of the maximum combustion temperature of samples from the initial (○) and activated (■) mixture of Ni + Al + xCo on the cobalt content.

Download (83KB)
8. Fig. 7. Results of X-ray phase analysis of combustion products of activated mixtures of Ni + Al + xCo at x = 10 (a), 30 (b) and 50 wt. % (c). Numbers indicate peaks of the following phases: 1 – solid solution NiAl(Co), 2 – solid solution Ni3Al(Co).

Download (135KB)
9. Fig. 8. Photographs of samples of combustion products of activated mixtures of Ni + Al + xCo at x = 10 (a), 20 (b), 30 (c), 40 (d), 50 wt.% (d).

Download (190KB)

Copyright (c) 2024 Russian Academy of Sciences