The effect of cobalt content and mechanical activation on combustion in the Ni + Al + Co system
- 作者: Kochetov N.A.1, Kovalev I.D.1
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- 期: 卷 43, 编号 4 (2024)
- 页面: 66-73
- 栏目: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674962
- DOI: https://doi.org/10.31857/S0207401X24040087
- EDN: https://elibrary.ru/VEKQMH
- ID: 674962
如何引用文章
详细
The effect of mechanical activation (MA) and cobalt content on the combustion velocity and maximum combustion temperature, elongation of samples during synthesis, the size of composite particles of the mixture after MA, phase composition and morphology of combustion products in the Ni + Al + Co system is investigated in this work. Activation of the Ni + Al + xCo mixture allowed the samples to burn at room temperature, with a cobalt content of up to 50 wt. %. An increase in the cobalt content in Ni + Al + xCo mixtures led to a decrease in the size of composite particles after MA, elongation of product samples and the maximum synthesis temperature. After MA, the elongation of the product samples and combustion velocity increased many times, the maximum synthesis temperature increased. With an increase in the cobalt content in the Ni + Al + Co mixture, combustion velocity first increases (at 10% Co), then decreases. Solid solutions based on NiAl and Ni3Al intermetallides were synthesized by the SHS method.
全文:

作者简介
N. Kochetov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: kolyan_kochetov@mail.ru
俄罗斯联邦, Chernogolovka
I. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: kolyan_kochetov@mail.ru
俄罗斯联邦, Chernogolovka
参考
- S. C. Kelly, N.N. Thadhani, J. Appl. Phys. 119, 95903 (2016). https://doi.org/10.1063/1.4942931
- Yu. S. Pogozhev, V. N. Sanin, D. M. Ikornikov, et al., Int. J. Self-Propag. High-Temp. Synth. 25 (3), 186 (2016). https://doi.org/10.3103/S1061386216030092
- V. N. Sanin, D. M. Ikornikov, D.E. Andreev, et al., Int. J. Self-Propag. High-Temp. Synth. 23 (4), 232 (2014). https://doi.org/10.3103/S1061386214040098
- B. S. Seplyarskii, N. I. Abzalov, R. A. Kochetkov, et al., Russ. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
- C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
- J. Wang, J. Alloys Compd. 456, 139 (2008).
- N. A. Kochetov, B. S. Seplyarskii, Russ. J. Phys. Chem. B 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079.
- N. A. Kochetov, A. E. Sychev, Combust. Explos. Shock Waves 56 (5), 520 (2020). https://doi.org/10.1134/S0010508220050020
- H. Zoz, H. Ren, InterCeram: Int. Ceram. Rev. 49 (1), 24 (2000).
- Сh-K. Lin, Sh-Sh. Hong, P-Y. Lee, Intermetallics 8 (9–11), 1043 (2000). https://doi.org/10.1016/S0966-9795(00)00039-X
- N. A. Kochetov, Russ. J. Phys. Chem. B 16 (4), 621 (2022). https://doi.org/10.1134/S1990793122040078
- N. A. Kochetov, Combust. Explos. Shock Waves 58 (6), 665 (2022). https://doi.org/10.1134/S0010508222060041
- T. Graf, C. Felser, S. S. P. Parkin, Prog. Solid State Chem. 39 (1), 1 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001
- W. Lin, A. J. Freeman, Phys. Rev. B. 45 (1), 61 (1992). https://doi.org/10.1103/PhysRevB.45.611992
- Y. Kimura, S. Miura, T. Suzuki, et al., Mater. Transact. 35 (11), 800 (1994). https://doi.org/10.2320/matertrans1989.35.800
- Y. Kimura, E. H. Lee, C.T. Liu, Mater. Transact. 36 (8), 1031 (1995). https://doi.org/10.2320/matertrans1989.36.1031
- Y. Tanaka, T. Ohmori, K. Oikawa, et al., Mater. Transact. 45 (2), 427 (2004). https://doi.org/10.2320/matertrans.45.427
- K. Oikawa, T. Ota, F. Gejima, et al., Mater. Transact. 42 (11), 2472 (2001). https://doi.org/10.2320/matertrans.42.2472
- J. Liu and J. G. Li, Mater. Sci. Eng. A. 454-455, 423 (2007). https://doi.org/10.1016/j.msea.2006.11.085
- M. A. Korchagin, Combust. Explos. Shock Waves 51 (5), 578 (2015). https://doi.org/10.1134/S0010508215050093
- N. A. Kochetov, B. S. Seplyarskii, Combust. Explos. Shock Waves 56 (3), 308 (2020). https://doi.org/10.1134/S0010508220030077
- N. A. Kochetov, B. S. Seplyarskii, Russ. J. Phys. Chem. B 17 (2), 381 (2023). https://doi.org/10.1134/S1990793123020082
- A. S. Rogachev, A. S. Mukas’yan Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics. Moscow: Fizmatlit (2012). [in Russian].
- O. K. Kamynina, A. S. Rogachev, A. E. Sytschev, et al., Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).
- O. K. Kamynina, A. S. Rogachev, L. M. Umarov, et al., Combust. Explos. Shock Waves, 39 (5), 548 (2003), https://doi.org/10.1023/A:1026161818701
- N. A. Kochetov, Combust. Explos. Shock Waves 57 (6), 663 (2021). https://doi.org/10.1134/S0010508222060041
- S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210 (2016). https://doi.org/10.3103/S1061386216040105
- S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90 (2015). https://doi.org/10.3103/S1061386215020107
- B. S. Seplyarskii, Dokl. Phys. Chem. 396 (4–6), 130 (2004).
- A. S. Rogachev, Combust. Explos. Shock Waves 39 (2), 150 (2003). https://doi.org/10.1023/A:1022956915794
补充文件
