Ignition of a gasless mixture array by a combustion wave

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The methods of mathematical modeling have been used to explore the initiation of combustion of a large mass of a condensed mixture in local contact with the end face of the burning layer. It is shown that the minimum width of the igniting layer is proportional to the width of the thermal front of the combustion wave. The coefficient of proportionality is determined by the initial temperature, heat and activation energy of the reaction. The calculation results can be used to estimate the effective activation energy of the reaction that controls the combustion mechanism of gasless system.

About the authors

A. P. Aldushin

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
Russian Federation, Chenogolovka

P. M. Krishenik

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Author for correspondence.
Email: petr@ism.ac.ru
Russian Federation, Chenogolovka

S. A. Rogachev

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
Russian Federation, Chenogolovka

References

  1. Merzhanov A.G. // Combust. and Flame. 1966. V. 10. № 4. P. 341. https://doi.org/10.1016/0010-2180(66)90041-1
  2. Melguizo-Gavilanes J., Boettcher P.A. Mével R., Shepherd J.E. // Combust. and Flame. 2019. V. 204. P. 116. https://doi.org/10.1016/j.combustflame.2018.12.036
  3. Krishenik P.M., Kostin S.V., Rogachev S.A. // Combust. Explos., Shock Waves. 2021. V. 57(2). P. 182. https://doi.org/1134/S0010508221020064
  4. Krishenik P.M. Kostin S.V., Rogachev S.A. // Intern. J. Self-Propag. High-Temp. Syns. 2020. V. 29. № 4. P. 191. https://doi.org/10.3103/S1061386220040056
  5. Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2021. V. 15(1). P. 68. https://doi.org/10.1134/S1990793121010073
  6. Aldushin A.P., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 1995. V. 4. № 1. P. 5.
  7. Merzhanov A.G. // Combust. Sci. and Tech. 1994. V. 98. P. 307. https://doi.org/10.1016/0010-2180(66)90041-1
  8. Krishenik P.M., Kostin S.V., Rogachev A.S. // Russ. J. Phys. Chem. B. 2023. V. 17(5). P. 1123. https://doi.org/10.1134/S1990793123050044
  9. Aldushin A.P., Bayliss A., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 2002. V. 11. № 1. P. 131.
  10. Samarskii A.A. The Theory of Difference Shemes. NY: CRC Press, 2001. https://doi.org/10.1201/9780203908518
  11. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 394. https://doi.org/10.1134/S1990793123020100
  12. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 399. https://doi.org/10.1134/S1990793123020112

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences