Ignition of a gasless mixture array by a combustion wave
- Authors: Aldushin A.P.1, Krishenik P.M.1, Rogachev S.A.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
- Issue: Vol 43, No 5 (2024)
- Pages: 27-33
- Section: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674945
- DOI: https://doi.org/10.31857/S0207401X24050044
- ID: 674945
Cite item
Abstract
The methods of mathematical modeling have been used to explore the initiation of combustion of a large mass of a condensed mixture in local contact with the end face of the burning layer. It is shown that the minimum width of the igniting layer is proportional to the width of the thermal front of the combustion wave. The coefficient of proportionality is determined by the initial temperature, heat and activation energy of the reaction. The calculation results can be used to estimate the effective activation energy of the reaction that controls the combustion mechanism of gasless system.
About the authors
A. P. Aldushin
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
Email: petr@ism.ac.ru
Russian Federation, Chenogolovka
P. M. Krishenik
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
Author for correspondence.
Email: petr@ism.ac.ru
Russian Federation, Chenogolovka
S. A. Rogachev
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
Email: petr@ism.ac.ru
Russian Federation, Chenogolovka
References
- Merzhanov A.G. // Combust. and Flame. 1966. V. 10. № 4. P. 341. https://doi.org/10.1016/0010-2180(66)90041-1
- Melguizo-Gavilanes J., Boettcher P.A. Mével R., Shepherd J.E. // Combust. and Flame. 2019. V. 204. P. 116. https://doi.org/10.1016/j.combustflame.2018.12.036
- Krishenik P.M., Kostin S.V., Rogachev S.A. // Combust. Explos., Shock Waves. 2021. V. 57(2). P. 182. https://doi.org/1134/S0010508221020064
- Krishenik P.M. Kostin S.V., Rogachev S.A. // Intern. J. Self-Propag. High-Temp. Syns. 2020. V. 29. № 4. P. 191. https://doi.org/10.3103/S1061386220040056
- Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2021. V. 15(1). P. 68. https://doi.org/10.1134/S1990793121010073
- Aldushin A.P., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 1995. V. 4. № 1. P. 5.
- Merzhanov A.G. // Combust. Sci. and Tech. 1994. V. 98. P. 307. https://doi.org/10.1016/0010-2180(66)90041-1
- Krishenik P.M., Kostin S.V., Rogachev A.S. // Russ. J. Phys. Chem. B. 2023. V. 17(5). P. 1123. https://doi.org/10.1134/S1990793123050044
- Aldushin A.P., Bayliss A., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 2002. V. 11. № 1. P. 131.
- Samarskii A.A. The Theory of Difference Shemes. NY: CRC Press, 2001. https://doi.org/10.1201/9780203908518
- Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 394. https://doi.org/10.1134/S1990793123020100
- Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 399. https://doi.org/10.1134/S1990793123020112
Supplementary files
