Ignition of a gasless mixture array by a combustion wave
- 作者: Aldushin A.P.1, Krishenik P.M.1, Rogachev S.A.1
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
- 期: 卷 43, 编号 5 (2024)
- 页面: 27-33
- 栏目: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674945
- DOI: https://doi.org/10.31857/S0207401X24050044
- ID: 674945
如何引用文章
详细
The methods of mathematical modeling have been used to explore the initiation of combustion of a large mass of a condensed mixture in local contact with the end face of the burning layer. It is shown that the minimum width of the igniting layer is proportional to the width of the thermal front of the combustion wave. The coefficient of proportionality is determined by the initial temperature, heat and activation energy of the reaction. The calculation results can be used to estimate the effective activation energy of the reaction that controls the combustion mechanism of gasless system.
作者简介
A. Aldushin
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka
P. Krishenik
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka
S. Rogachev
Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences
Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka
参考
- Merzhanov A.G. // Combust. and Flame. 1966. V. 10. № 4. P. 341. https://doi.org/10.1016/0010-2180(66)90041-1
- Melguizo-Gavilanes J., Boettcher P.A. Mével R., Shepherd J.E. // Combust. and Flame. 2019. V. 204. P. 116. https://doi.org/10.1016/j.combustflame.2018.12.036
- Krishenik P.M., Kostin S.V., Rogachev S.A. // Combust. Explos., Shock Waves. 2021. V. 57(2). P. 182. https://doi.org/1134/S0010508221020064
- Krishenik P.M. Kostin S.V., Rogachev S.A. // Intern. J. Self-Propag. High-Temp. Syns. 2020. V. 29. № 4. P. 191. https://doi.org/10.3103/S1061386220040056
- Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2021. V. 15(1). P. 68. https://doi.org/10.1134/S1990793121010073
- Aldushin A.P., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 1995. V. 4. № 1. P. 5.
- Merzhanov A.G. // Combust. Sci. and Tech. 1994. V. 98. P. 307. https://doi.org/10.1016/0010-2180(66)90041-1
- Krishenik P.M., Kostin S.V., Rogachev A.S. // Russ. J. Phys. Chem. B. 2023. V. 17(5). P. 1123. https://doi.org/10.1134/S1990793123050044
- Aldushin A.P., Bayliss A., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 2002. V. 11. № 1. P. 131.
- Samarskii A.A. The Theory of Difference Shemes. NY: CRC Press, 2001. https://doi.org/10.1201/9780203908518
- Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 394. https://doi.org/10.1134/S1990793123020100
- Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 399. https://doi.org/10.1134/S1990793123020112
补充文件
