Dipole Moment of the S0 → S1 Chlorophyll a Transition in Solvents with a Varied Refraction Index

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dependence of the dipole moment of chlorophyll a’s (Chl) S0 → S1 transition on the value of the solvent refractive index n is calculated. The interactions between the electric field of a light wave, the electronic transition of the pigment to an excited state, and the dielectric polarization of an optical medium are analyzed. The reactive changes in Chl’s transition dipole moment in solvents with different refractive index values are calculated in the time-dependent density functional theory (TD–DFT) using the LC-ωPBE hybrid functional and the polarizable continuum model. The ab initio calculations are approximated by the Onsager reactive field model with an effective polarizability of Chl equal to 21 Å3. The model quantitatively describes the experimental dependence of Chl’s extinction coefficient in solvents with a refractive index of 1.3 < n < 1.7. In a protein environment with a refractive index of n = 1.4, the transition dipole moment of Chl is 5.5 D. For this environment, the distributions of the electrostatic potential in the ground and excited states of Chl are calculated; the ab initio calculations are approximated by a set of partial transient charges located on the heavy atoms of the π-conjugated system of the Chl molecule.

Sobre autores

D. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;
Belozersky Institute of Physico-Chemical Biology, Moscow State University

Email: cherepanov@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

G. Milanovsky

Belozersky Institute of Physico-Chemical Biology, Moscow State University

Email: cherepanov@belozersky.msu.ru
Moscow, Russia

A. Aybush

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: cherepanov@belozersky.msu.ru
Moscow, Russia

V. Nadtochenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: cherepanov@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249; https://doi.org/10.1021/acs.chemrev.6b00002
  2. Zucchelli G., Jennings R.C., Garlaschi F.M. et al. // Biophys. J. 2002. V. 82. № 1. P. 378; https://doi.org/10.1016/S0006-3495(02)75402-7
  3. Madjet M.E., Abdurahman A., Renger T. // J. Phys. Chem. B. 2006. V. 110. № 34. P. 17268;. https://doi.org/10.1021/jp0615398
  4. Seely G.R., Jensen R.G. // Spectrochim. Acta. 1965. V. 21. № 10. P. 1835; https://doi.org/10.1016/0371-1951(65)80095-9
  5. Houssier C., Sauer K. // J. Amer. Chem. Soc. 1970. V. 92. № 4. P. 779; https://doi.org/10.1021/ja00707a007
  6. Colbow K. // BBA – Bioenerg. 1973. V. 314. № 3. P. 320; https://doi.org/10.1016/0005-2728(73)90116-3
  7. Shipman L.L., Cotton T.M., Norris J.R., Katz J.J. // J. Amer. Chem. Soc. 1976. V. 98. № 25. P. 8222; https://doi.org/10.1021/ja00441a056
  8. Linke M., Lauer A., Von Haimberger T. et al. // Ibid. 2008. V. 130. № 45. P. 14904; https://doi.org/10.1021/ja804096s
  9. Shipman L.L. // Photochem. Photobiol. 1977. V. 26. № 3. P. 287; https://doi.org/10.1111/j.1751-1097.1977.tb07486.x
  10. Knox R.S. // Ibid. 2003. V. 77. № 5. P. 492; https://doi.org/10.1562/0031-8655(2003)0770492-daosoc2.0.co2
  11. Oviedo M.B., Sánchez C.G. // J. Phys. Chem. A. 2011. V. 115. № 44. P. 12280; https://doi.org/10.1021/jp203826q
  12. Khokhlov D., Belov A. // Biophys. Chem. 2019. V. 246. P. 16; https://doi.org/10.1016/j.bpc.2019.01.001
  13. Birge R.R., Sullivan M.J., Kohler B.E. // J. Amer. Chem. Soc. 1976. V. 98. № 2. P. 358; https://doi.org/10.1021/ja00418a007
  14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
  15. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. № 1–3. P. 51; https://doi.org/10.1016/j.cplett.2004.06.011
  16. Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044108; https://doi.org/10.1063/1.3185673
  17. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999; https://doi.org/10.1021/cr9904009
  18. Marenich A. V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378; https://doi.org/10.1021/jp810292n
  19. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
  20. Черепанов Д.А., Милановский Г.Е., Надточенко В.А., Семёнов А.Ю. // Хим. физика. 2023. Т. 42. № 5.
  21. Chako N.Q. // J. Chem. Phys. 1934. V. 2. № 10. P. 644; https://doi.org/10.1063/1.1749368
  22. Lorentz H.A. The Theory of Electrons. 2nd edn. Leipzig, New York: Dover, 1952.
  23. Onsagbr L. // J. Amer. Chem. Soc. 1936. V. 58. № 8. P. 1486; https://doi.org/10.1021/ja01299a050
  24. Fröhlich H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Clarendon Press, 1949.
  25. Böttcher C.J.F., van Belle O.C., Bordewijk P., Rip A. Theory of electric polarization. 2nd ed. V. 1. Dielectrics in static fields. Amsterdam, New York: Elsevier Scientific Pub. Co, 1974.
  26. Mulliken R.S., Rieke C.A. // Rep. Prog. Phys. 1941. V. 8. № 1. P. 231; https://doi.org/10.1088/0034-4885/8/1/312
  27. Pickett L.W., Paddock E., Sackter E. // J. Amer. Chem. Soc. 1941. V. 63. № 4. P. 1073; https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03
  28. Jacobs L.E., Platt J.R. // J. Chem. Phys. 1948. V. 16. № 12. P. 1137; https://doi.org/10.1063/1.1746745
  29. Neporent B.S., Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 634. P. 1954.
  30. Moffitt W., Moscownz A. // J. Chem. Phys. 1959. V. 30. № 3. P. 648; https://doi.org/10.1063/1.1730025
  31. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 255.
  32. Lorenz L. // Ann. Phys. 1880. V. 247. № 9. P. 70; https://doi.org/10.1002/andp.18802470905
  33. Pacak P. // J. Solut. Chem. 1987. V. 16. № 1. P. 71; https://doi.org/10.1007/BF00647016
  34. Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 646. P. 1954.
  35. Schuyer J. // Recl. des Trav. Chim. des Pays-Bas. 1953. V. 72. № 11. P. 933; https://doi.org/10.1002/recl.19530721104
  36. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 395.
  37. Liptay W. // Z. Naturforschg. A. 1966. V. 21. № 10. P. 1605; https://doi.org/10.1515/zna-1966-1010
  38. Weigang O.E. // J. Chem. Phys. 1964. V. 41. № 5. P. 1435; https://doi.org/10.1063/1.1726086
  39. Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
  40. Karakas A., Ceylan Y., Karakaya M. et al. // Open Chem. 2018. V. 16. № 1. P. 1242; https://doi.org/10.1515/chem-2018-0134
  41. Knox R.S., van Amerongen H. // J. Phys. Chem. B. 2002. V. 106. № 20. P. 5289; https://doi.org/10.1021/jp013927+
  42. Knox R.S., Spring B.Q. // Photochem. Photobiol. 2003. V. 77. № 5. P. 497; https://doi.org/10.1562/0031-8655(2003)0770497-dsitc2.0.co2
  43. Adolphs J., Müh F., Madjet M.E.A. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 10. P. 3331; https://doi.org/10.1021/ja9072222
  44. Novoderezhkin V.I., Palacios M.A., Van Amerongen H., Van Grondelle R. // J. Phys. Chem. B. 2005. V. 109. № 20. P. 10493; https://doi.org/10.1021/jp044082f
  45. Adolphs J., Müh F., Madjet M.E.A., Renger T. // Photosynth. Res. 2008. V. 95. № 2–3. P. 197; https://doi.org/10.1007/s11120-007-9248-z
  46. Krawczyk S. // BBA – Bioenerg. 1991. V. 1056. № 1. P. 64; https://doi.org/10.1016/S0005-2728(05)80073-8
  47. Altmann R.B., Haarer D., Renge I. // Chem. Phys. Lett. 1993. V. 216. № 3–6. P. 281; https://doi.org/10.1016/0009-2614(93)90095-I
  48. Хохлова С.С., Михайлова В.А., Иванов А.И. // ЖФХ. 2008. Т. 82. № 6. С. 1161.
  49. Van Manen H.J., Verkuijlen P., Wittendorp P. et al. // Biophys. J. 2008. V. 94. № 8. P. L67; https://doi.org/10.1529/biophysj.107.127837
  50. Vörös J. // Biophys. J. 2004. V. 87. № 1. P. 553; https://doi.org/10.1529/biophysj.103.030072
  51. Zölls S., Gregoritza M., Tantipolphan R. et al. // J. Pharm. Sci. 2013. V. 102. № 5. P. 1434; https://doi.org/10.1002/jps.23479
  52. Byrdin M., Jordan P., Krauss N. et al. // Biophys. J. 2002. V. 83. № 1. P. 433; https://doi.org/10.1016/S0006-3495(02)75181-3
  53. Yang M., Damjanović A., Vaswani H.M., Fleming G.R. // Ibid. 2003. V. 85. № 1. P. 140; https://doi.org/10.1016/S0006-3495(03)74461-0
  54. Akhtar P., Caspy I., Nowakowski P.J. et al. // J. Amer. Chem. Soc. 2021. V. 143. № 36. P. 14601; https://doi.org/10.1021/jacs.1c05010
  55. Kimura A., Kitoh-Nishioka H., Aota T., et al. // J. Phys. Chem. B. 2022. V. 126. № 22. P. 4009; https://doi.org/10.1021/acs.jpcb.2c00869
  56. Philipson K.D., Cheng Tsai S., Sauer K. // J. Phys. Chem. 1971. V. 75. № 10. P. 1440; https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (114KB)
3.

Baixar (64KB)
4.

Baixar (213KB)

Declaração de direitos autorais © Д.А. Черепанов, Г.Е. Милановский, А.В. Айбуш, В.А. Надточенко, 2023