Дипольный момент перехода S0 → S1 хлорофилла a в растворителях с различным индексом рефракции
- Авторы: Черепанов Д.А.1,2, Милановский Г.Е.2, Айбуш А.В.1, Надточенко В.А.1,3
-
Учреждения:
- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского Московского государственного университета им. М.В. Ломоносова
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 42, № 6 (2023)
- Страницы: 77-87
- Раздел: К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ АКАДЕМИКА В.И. ГОЛЬДАНСКОГО
- URL: https://cijournal.ru/0207-401X/article/view/674861
- DOI: https://doi.org/10.31857/S0207401X23060031
- EDN: https://elibrary.ru/UGYOSZ
- ID: 674861
Цитировать
Аннотация
Проведен расчет зависимости дипольного момента перехода S0 → S1 хлорофилла a от величины индекса рефракции n растворителя. Проанализированы взаимодействия между электрическим полем световой волны, электронным переходом пигмента в возбужденное состояние и диэлектрической поляризацией оптической среды. Эффект реактивного увеличения переходного дипольного момента молекулы хлорофилла a в растворителях с различной величиной индекса рефракции рассчитан в рамках нестационарной теории функционала плотности (TD–DFT) с использованием гибридного функционала LC-ωPBE и модели поляризуемого континуума. Расчеты ab initio аппроксимированы моделью реактивного поля Онзагера с эффективной поляризуемостью хлорофилла равной 21 Å3. Модель количественно описывает экспериментальную зависимость коэффициента экстинкции хлорофилла a в растворителях с индексом рефракции 1.3 < n < 1.7. В белковом окружении с индексом рефракции n = 1.4 величина дипольного момента перехода хлорофилла составляет 5.5 Д. Для этого окружения было рассчитано распределение электростатического потенциала в основном и возбужденном состояниях хлорофилла; расчеты ab initio аппроксимированы набором парциальных переходных зарядов, расположенных на тяжелых атомах π-сопряженной системы молекулы хлорофилла.
Об авторах
Д. А. Черепанов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Научно-исследовательский институт физико-химической биологии им. А.Н. БелозерскогоМосковского государственного университета им. М.В. Ломоносова
Email: cherepanov@belozersky.msu.ru
Россия, Москва; Россия, Москва
Г. Е. Милановский
Научно-исследовательский институт физико-химической биологии им. А.Н. БелозерскогоМосковского государственного университета им. М.В. Ломоносова
Email: cherepanov@belozersky.msu.ru
Россия, Москва
А. В. Айбуш
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
Email: cherepanov@belozersky.msu.ru
Россия, Москва
В. А. Надточенко
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: cherepanov@belozersky.msu.ru
Россия, Москва; Россия, Москва
Список литературы
- Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249; https://doi.org/10.1021/acs.chemrev.6b00002
- Zucchelli G., Jennings R.C., Garlaschi F.M. et al. // Biophys. J. 2002. V. 82. № 1. P. 378; https://doi.org/10.1016/S0006-3495(02)75402-7
- Madjet M.E., Abdurahman A., Renger T. // J. Phys. Chem. B. 2006. V. 110. № 34. P. 17268;. https://doi.org/10.1021/jp0615398
- Seely G.R., Jensen R.G. // Spectrochim. Acta. 1965. V. 21. № 10. P. 1835; https://doi.org/10.1016/0371-1951(65)80095-9
- Houssier C., Sauer K. // J. Amer. Chem. Soc. 1970. V. 92. № 4. P. 779; https://doi.org/10.1021/ja00707a007
- Colbow K. // BBA – Bioenerg. 1973. V. 314. № 3. P. 320; https://doi.org/10.1016/0005-2728(73)90116-3
- Shipman L.L., Cotton T.M., Norris J.R., Katz J.J. // J. Amer. Chem. Soc. 1976. V. 98. № 25. P. 8222; https://doi.org/10.1021/ja00441a056
- Linke M., Lauer A., Von Haimberger T. et al. // Ibid. 2008. V. 130. № 45. P. 14904; https://doi.org/10.1021/ja804096s
- Shipman L.L. // Photochem. Photobiol. 1977. V. 26. № 3. P. 287; https://doi.org/10.1111/j.1751-1097.1977.tb07486.x
- Knox R.S. // Ibid. 2003. V. 77. № 5. P. 492; https://doi.org/10.1562/0031-8655(2003)0770492-daosoc2.0.co2
- Oviedo M.B., Sánchez C.G. // J. Phys. Chem. A. 2011. V. 115. № 44. P. 12280; https://doi.org/10.1021/jp203826q
- Khokhlov D., Belov A. // Biophys. Chem. 2019. V. 246. P. 16; https://doi.org/10.1016/j.bpc.2019.01.001
- Birge R.R., Sullivan M.J., Kohler B.E. // J. Amer. Chem. Soc. 1976. V. 98. № 2. P. 358; https://doi.org/10.1021/ja00418a007
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
- Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. № 1–3. P. 51; https://doi.org/10.1016/j.cplett.2004.06.011
- Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044108; https://doi.org/10.1063/1.3185673
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999; https://doi.org/10.1021/cr9904009
- Marenich A. V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378; https://doi.org/10.1021/jp810292n
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
- Черепанов Д.А., Милановский Г.Е., Надточенко В.А., Семёнов А.Ю. // Хим. физика. 2023. Т. 42. № 5.
- Chako N.Q. // J. Chem. Phys. 1934. V. 2. № 10. P. 644; https://doi.org/10.1063/1.1749368
- Lorentz H.A. The Theory of Electrons. 2nd edn. Leipzig, New York: Dover, 1952.
- Onsagbr L. // J. Amer. Chem. Soc. 1936. V. 58. № 8. P. 1486; https://doi.org/10.1021/ja01299a050
- Fröhlich H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Clarendon Press, 1949.
- Böttcher C.J.F., van Belle O.C., Bordewijk P., Rip A. Theory of electric polarization. 2nd ed. V. 1. Dielectrics in static fields. Amsterdam, New York: Elsevier Scientific Pub. Co, 1974.
- Mulliken R.S., Rieke C.A. // Rep. Prog. Phys. 1941. V. 8. № 1. P. 231; https://doi.org/10.1088/0034-4885/8/1/312
- Pickett L.W., Paddock E., Sackter E. // J. Amer. Chem. Soc. 1941. V. 63. № 4. P. 1073; https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03
- Jacobs L.E., Platt J.R. // J. Chem. Phys. 1948. V. 16. № 12. P. 1137; https://doi.org/10.1063/1.1746745
- Neporent B.S., Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 634. P. 1954.
- Moffitt W., Moscownz A. // J. Chem. Phys. 1959. V. 30. № 3. P. 648; https://doi.org/10.1063/1.1730025
- Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 255.
- Lorenz L. // Ann. Phys. 1880. V. 247. № 9. P. 70; https://doi.org/10.1002/andp.18802470905
- Pacak P. // J. Solut. Chem. 1987. V. 16. № 1. P. 71; https://doi.org/10.1007/BF00647016
- Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 646. P. 1954.
- Schuyer J. // Recl. des Trav. Chim. des Pays-Bas. 1953. V. 72. № 11. P. 933; https://doi.org/10.1002/recl.19530721104
- Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 395.
- Liptay W. // Z. Naturforschg. A. 1966. V. 21. № 10. P. 1605; https://doi.org/10.1515/zna-1966-1010
- Weigang O.E. // J. Chem. Phys. 1964. V. 41. № 5. P. 1435; https://doi.org/10.1063/1.1726086
- Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
- Karakas A., Ceylan Y., Karakaya M. et al. // Open Chem. 2018. V. 16. № 1. P. 1242; https://doi.org/10.1515/chem-2018-0134
- Knox R.S., van Amerongen H. // J. Phys. Chem. B. 2002. V. 106. № 20. P. 5289; https://doi.org/10.1021/jp013927+
- Knox R.S., Spring B.Q. // Photochem. Photobiol. 2003. V. 77. № 5. P. 497; https://doi.org/10.1562/0031-8655(2003)0770497-dsitc2.0.co2
- Adolphs J., Müh F., Madjet M.E.A. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 10. P. 3331; https://doi.org/10.1021/ja9072222
- Novoderezhkin V.I., Palacios M.A., Van Amerongen H., Van Grondelle R. // J. Phys. Chem. B. 2005. V. 109. № 20. P. 10493; https://doi.org/10.1021/jp044082f
- Adolphs J., Müh F., Madjet M.E.A., Renger T. // Photosynth. Res. 2008. V. 95. № 2–3. P. 197; https://doi.org/10.1007/s11120-007-9248-z
- Krawczyk S. // BBA – Bioenerg. 1991. V. 1056. № 1. P. 64; https://doi.org/10.1016/S0005-2728(05)80073-8
- Altmann R.B., Haarer D., Renge I. // Chem. Phys. Lett. 1993. V. 216. № 3–6. P. 281; https://doi.org/10.1016/0009-2614(93)90095-I
- Хохлова С.С., Михайлова В.А., Иванов А.И. // ЖФХ. 2008. Т. 82. № 6. С. 1161.
- Van Manen H.J., Verkuijlen P., Wittendorp P. et al. // Biophys. J. 2008. V. 94. № 8. P. L67; https://doi.org/10.1529/biophysj.107.127837
- Vörös J. // Biophys. J. 2004. V. 87. № 1. P. 553; https://doi.org/10.1529/biophysj.103.030072
- Zölls S., Gregoritza M., Tantipolphan R. et al. // J. Pharm. Sci. 2013. V. 102. № 5. P. 1434; https://doi.org/10.1002/jps.23479
- Byrdin M., Jordan P., Krauss N. et al. // Biophys. J. 2002. V. 83. № 1. P. 433; https://doi.org/10.1016/S0006-3495(02)75181-3
- Yang M., Damjanović A., Vaswani H.M., Fleming G.R. // Ibid. 2003. V. 85. № 1. P. 140; https://doi.org/10.1016/S0006-3495(03)74461-0
- Akhtar P., Caspy I., Nowakowski P.J. et al. // J. Amer. Chem. Soc. 2021. V. 143. № 36. P. 14601; https://doi.org/10.1021/jacs.1c05010
- Kimura A., Kitoh-Nishioka H., Aota T., et al. // J. Phys. Chem. B. 2022. V. 126. № 22. P. 4009; https://doi.org/10.1021/acs.jpcb.2c00869
- Philipson K.D., Cheng Tsai S., Sauer K. // J. Phys. Chem. 1971. V. 75. № 10. P. 1440; https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03
