Fe(III), Co(III), and Cu(II) Complexes with Acylhydrazones Containing a Triphenylphosphonium Moiety: Synthesis, Crystal Structure, and Antibacterial Activity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New acylhydrazones based on para- and meta-nitrobenzhydrazides and substituted salicylic aldehyde containing a triphenylphosphonium fragment were synthesized and spectrally characterized. With these acylhydrazones, a series of new mononuclear coordination compounds of Fe(III), Co(III), and Cu(II) were obtained, the molecular structure of which was determined by single-crystal X-ray diffraction. The antibacterial activity of the isolated acylhydrazones and copper(II) complexes against Staphylococcus aureus and Escherichia coli was studied. It was shown that the transition from an organic compound to a complex one contributes to a significant increase in activity against E. coli.

Texto integral

Acesso é fechado

Sobre autores

A. Matiukhina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

E. Zorina-Tikhonova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

N. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

L. Popov

Southern Federal University

Email: ezorinatikhonova@igic.ras.ru
Rússia, Rostov-on-Don

P. Morozov

Southern Federal University

Email: ezorinatikhonova@igic.ras.ru
Rússia, Rostov-on-Don

V. Lazarenko

National Research Center “Kurchatov Institute”

Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

A. Zubenko

North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center

Email: ezorinatikhonova@igic.ras.ru
Rússia, Novocherkassk

L. Fetisov

North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center

Email: ezorinatikhonova@igic.ras.ru
Rússia, Novocherkassk

A. Svyatogorova

North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center

Email: ezorinatikhonova@igic.ras.ru
Rússia, Novocherkassk

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ezorinatikhonova@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Larsson D.G.J., Flach C.-F. // Nat. Rev. Microbiol. 2022. V. 20. P. 257. https://doi.org/10.1038/s41579-021-00649-x
  2. Darby E.M., Trampari E., Siasat P. et al. // Nat. Rev. Microbiol. 2024. V. 21. P. 280. https://doi.org/10.1038/s41579-022-00820-y
  3. Lucien M.A.B., Canarie M.F., Kilgore P.E. et al. // Int. J. Infect. Dis. 2021. V. 104. P. 250. https://doi.org/10.1016/j.ijid.2020.12.087
  4. Ding D., Wang B., Zhang X. et al. // Ecotoxicol. Environ. Saf. V. 254. P. 114734. https://doi.org/10.1016/j.ecoenv.2023.114734
  5. Vlad I.M., Nuță D.C., Căproiu M.T. et al. // Antibiotics. 2024. V. 13. № 3. P. 212. https://doi.org/10.3390/antibiotics13030212
  6. Sharma P.C., Sharma D., Sharma A. et al. // Mater. Today Chem. 2020. V. 18. P. 100349. https://doi.org/10.1016/j.mtchem.2020.100349
  7. Matiukhina A.K., Vladimirova А.E., Zorina-Tikhonova Е.N. et al. // Russ. J. Gen. Chem. 2023. V. 93 № 2. P. S596. https://doi.org/10.1134/S1070363223150276
  8. Czyżewska I., Mazur L., Popiołek Ł. // Chem. Biol. Drug Des. 2024. V. 104. № 1. P. e14590. https://doi.org/10.1111/cbdd.14590
  9. Deng J., Gou Y., Chen W. // Bioorg. Med. Chem. 2016. V. 24. № 10. P. 2190. https://doi.org/10.1016/j.bmc.2016.03.033
  10. Chimmalagi G.H., Kendur U., Patil S.M. et al. // Appl. Organomet. Chem. 2018. V. 32. № 6. P. e4337. https://doi.org/10.1002/aoc.4337
  11. Fekri R., Salehi M., Asadi A., Kubicki M. // Appl. Organomet. Chem. 2018. V. 32. № 2, P. e4019. https://doi.org/10.1002/aoc.4019
  12. Chimmalagi G.H., Kendur U., Patil S.M. et al. // Appl. Organomet. Chem. 2019. V. 33. № 1. P. e4557. https://doi.org/10.1002/aoc.4557
  13. Jansová H., Kubeš J., Reimerová P. et al. // Chem. Res. Toxicol. 2018. V. 31. № 11. P. 1151. https://doi.org/10.1021/acs.chemrestox.8b00165
  14. Bashir M., Dar A.A., Yousuf I. // ACS Omega. 2023. V. 8. № 3. P. 3026. https://doi.org/10.1021/acsomega.2c05927
  15. Jing C., Wang C., Yan K. et al. // Bioorg. Med. Chem. 2016. V. 24. № 2. P. 270. https://doi.org/10.1016/j.bmc.2015.12.013
  16. Hamzi I. // Mini-Rev. Org. Chem. 2022. V. 19. № 8. P. 968. https://doi.org/10.2174/1570193x19666220328124048
  17. Thota S., Rodrigues D.A., Pinheiro P.S.M. et al. // Bioorg. Med. Chem. Lett. 2018. V. 28. № 17. P. 2797. https://doi.org/10.1016/j.bmcl.2018.07.015
  18. Asadi Z., Haddadi E., Sedaghat M. // J. Photochem. Photobiol. A. 2017. V 337. P. 140. https://doi.org/10.1016/j.jphotochem.2017.01.022
  19. Li Y., Yang Z., Zhou M. et al. // RSC Adv. 2017. V. 7. P. 41527. https://doi.org/10.1039/c7ra05504h
  20. Li Y., Yang Z., Zhou M., Lia Y. // RSC Adv. 2017. V. 7. P. 49404. https://doi.org/10.1039/c7ra10283f
  21. Lauria A., Bonsignore R., Terenzi A. et al. // Dalton Trans. 2014. V. 43. P. 6108. https://doi.org/10.1039/c3dt53066c
  22. Anastasiadou D., Psomas G., Kalogiannis S. et al. // J. Inorg. Biochem. 2019. V. 198. P. 110750. https://doi.org/10.1016/j.jinorgbio.2019.110750
  23. Burlov A.S., Vlasenko V.G., Chal’tsev B.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 439. https://doi.org/10.1134/s1070328421070010
  24. Stadler A.-M., Harrowfield J. // Inorg. Chim. Acta. 2009. V. 362. № 12. P. 4298. https://doi.org/10.1016/j.ica.2009.05.062
  25. Murphy M.P., Smith R.A.J. // Annu. Rev. Pharmacol. Toxicol. 2007. V. 47. P. 629. https://doi.org/10.1146/annurev.pharmtox.47.120505. 105110
  26. Milenković M.R., Živković-Radovanović V., Andjelković L. // Russ. J. Gen. Chem. 2020. V. 90, P. 1716. https://doi.org/10.1134/s1070363220090194
  27. Lee S.K., Tan K.W., Ng S.W. et al. // Spectrochim. Acta. A. 2014. V. 121. P. 101. https://doi.org/10.1016/j.saa.2013.10.084
  28. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1996.
  29. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  30. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  31. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  33. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  34. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  35. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
  36. Llunell M., Casanova D., Cirera J. et al. SHAPE, v.2.1, Program for the stereochemical analysis of molecular fragments by means of continuous shape measures and associated tools. Barcelona (Spain): Universitat de Barcelona, 2013.
  37. Scarlett N.V.Y., Madsen I.C. // Powder Diffr. 2006. V. 21. № 4. P. 278. https://doi.org/10.1154/1.2362855
  38. Adam M.S.S., Alghanim A.S.I., Abualreish M.J.A. et al. // Appl. Organomet. Chem. 2024. V. 38. № 4. Art. e7394. https://doi.org/10.1002/aoc.7394
  39. Yan Y.-B., Yang R.-W., Zhang H.-W. et al. // J. Mol. Struct. 2024. V. 1299. P. 137148. https://doi.org/10.1016/j.molstruc.2023.137148
  40. El-Sherif A.A., Fetoh A., Abdulhamed Y.Kh., Abu El-Reash G.M. // Inorg. Chim. Acta. 2018. V. 480. P. 1. https://doi.org/10.1016/j.ica.2018.04.038
  41. Adly O.M.I., Taha A., Ibrahim M.A. // Appl. Organomet. Chem. 2022. V. 36. № 3. Art. e6558. https://doi.org/10.1002/aoc.6558
  42. Alkhatib F.M., Alsulami H.M. // Heliyon. 2023. V. 9. № 8. Art. e18988. https://doi.org/10.1016/j.heliyon.2023.e18988
  43. Ahmed M.A., Zhernakov M.A., Gilyazetdinov E.M. et al. // Inorganics. 2023. V. 11. № 4. P. 167. https://doi.org/10.3390/inorganics11040167
  44. El-Gammal O.A., Abu El-Reash G.M., Bedier R.A. // Appl. Organomet. Chem. 2019. V. 33. № 10. Art. e5141. https://doi.org/10.1002/aoc.5141
  45. Bellamy L.J. The Infrared Spectra of Complex Molecules. Springer Dordrecht. Chapman and Hall, London, 1980. https://doi.org/10.1007/978-94-011-6520-4
  46. Hashem H.E., Mohamed E.A., Farag A.A. et al. // Appl. Organomet. Chem. 2021. V. 35. № 9. Art. e6322. https://doi.org/10.1002/aoc.6322
  47. Edwards D.A., Richards R. // Spectrochim Acta. A. 1978. V. 34. № 2. P. 167. https://doi.org/ 10.1016/0584-8539(78)80111-1
  48. Huang D.-S., Liu X.-R., Zhao S.-S., Yang Z.-W. // Polyhedron. 2022. V. 211. P. 115516. https://doi.org/10.1016/j.poly.2021.115516
  49. Chang L.-L., Yang J., Lai S.-Q. et al. // Inorg. Chim. Acta. 2022. V. 532. P. 120751. https://doi.org/10.1016/j.ica.2021.120751
  50. Dinku D., Demissie T.B., Beas I.N. et al. // Inorg. Chem. Commun. 2024. V. 160. P. 111903. https://doi.org/10.1016/j.inoche.2023.111903
  51. Shakdofa M.M.E., Al-Hakimi A.N., Elsaied F.A. et al. // Bull. Chem. Soc. Ethiop. 2017. V. 31. № 1. P. 75. https://doi.org/10.4314/bcse.v31i1.7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. General scheme for the synthesis of acylhydrazones (H₂L¹)Cl, (H₂L²)Cl and complexes I–VI.

Baixar (231KB)
3. Fig. 1. Structure of complexes II (a) and III (b) (hydrogen atoms are not shown).

Baixar (184KB)
4. Fig. 2. Structure of complexes V (a) and VI (b) (nitrate anions, hydrogen atoms and solvate molecules are not shown).

Baixar (347KB)
5. Additional materials
Baixar (1MB)

Declaração de direitos autorais © Российская академия наук, 2025