Immunofluorescent Localization of Ca²⁺-Sensor Proteins in The Somatic Motor Muscles of The Earthworm Lumbricus terrestris

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The method of immunofluorescent staining of earthworm somatic muscle samples showed the presence of calmodulin, Ca²⁺-calmodulin-dependent protein kinases type 1 and type 2, synaptotagmin type 2 and type 7 and calcineurin A. These proteins are detected in both synaptic and extrasynaptic regions of the motor muscle. However, for synaptotagmin type 2 and type 7, calcineurin A, their predominant localization in the area of neuromuscular synapses has been established. Besides, synaptic localization for synaptotagmin 7 and calcineurin A is most clearly expressed.

Full Text

Restricted Access

About the authors

L. F. Nurullin

Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”; Kazan State Medical University

Author for correspondence.
Email: lenizn@yandex.ru
Russian Federation, Kazan; Kazan

N. D. Almazov

Kazan State Medical University

Email: lenizn@yandex.ru
Russian Federation, Kazan

E. M. Volkov

Kazan State Medical University

Email: euroworm@mail.ru
Russian Federation, Kazan

References

  1. Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. https://doi.org/10.1101/cshperspect.a011353
  2. DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41: 2265–2272.
  3. Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H (2021) The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 14: 691363.https://doi.org/10.3389/fnmol.2021.691363
  4. Sakaba T, Neher E (2001) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32: 1119–1131.https://doi.org/10.1016/s0896-6273(01)00543-8
  5. Liu Q, Chen B, Ge Q, Wang ZW (2007) Presynaptic Ca²⁺/calmodulin-dependent protein kinase II modulates neurotransmitter release byactivating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci 27: 10404–10413.https://doi.org/10.1523/jneurosci.5634-06.2007
  6. Fujii T, Sakurai A, Littleton JT, Yoshihara M (2021) Synaptotagmin 7 switches short-term synaptic plasticity from depression to facilitation by suppressing synaptic transmission. Sci Rep 11: 4059.https://doi.org/10.1038/s41598-021-83397-5
  7. Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Südhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca²⁺ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26: 13493–13504. https://doi.org/10.1523/jneurosci.3519-06.2006
  8. Martinez-Pena y Valenzuela I, Mouslim C, Akaaboune M (2010) Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo. J Neurosci 30: 12455–12465.https://doi.org/10.1523/jneurosci.3309-10.2010
  9. Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA (1993) Identification of novel isoforms of the delta subunit of Ca²⁺/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem 268: 14443–14449. http://dx.doi.org/10.1016/S0021-9258(19)85259-6
  10. Bayer KU, Harbers K, Schulman H (1998) alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 17: 5598–5605. https://doi.org/10.1093%2Femboj%2F17.19.5598
  11. Martinez-Pena y Valenzuela I, Akaaboune M (2021) The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 10: 358.https://doi.org/10.3390/cells10020358
  12. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57: 94–107.https://doi.org/10.1016/j.neuron.2007.11.016
  13. Nesler KR, Starke EL, Boin NG, Ritz M, Barbee SA (2016) Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 76: 33–41.https://doi.org/10.1016/j.mcn.2016.08.007
  14. Chen C, Arai I, Satterfield R, Young SM Jr, Jonas P (2017) Synaptotagmin 2 Is the Fast Ca²⁺ Sensor at a Central Inhibitory Synapse. Cell Rep 18: 723–736.https://doi.org/10.1016/j.celrep.2016.12.067
  15. Xu J, Mashimo T, Südhof TC (2007) Synaptotagmin-1, –2, and –9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54: 567–581.https://doi.org/10.1016/j.neuron.2007.05.004
  16. Weyrer C, Turecek J, Harrison B, Regehr WG (2021) Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse. Cell Rep 36: 109719.https://doi.org/10.1016/j.celrep.2021.109719
  17. Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18: 124–134. https://doi.org/10.1016/S0165-6147(97)01046-8
  18. Creamer TP (2020) Calcineurin. Cell Commun Signal 18: 137.https://doi.org/10.1186/s12964-020-00636-4
  19. Volkov EM, Nurullin LF (2005) Effects of cholinergic receptor agonists and antagonists on miniature stimulatory postsynaptic ionic currents in somatic muscle cells of Lumbricus terrestris. Bull Exp Biol Med 139: 360–362.https://doi.org/10.1007/s10517-005-0294-2
  20. Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent Identification of GABAergic Structures in the Somatic Muscle of the Earthworm Lumbricus terrestris. Biochem (Mosc) Suppl Ser A Membr Cell Biol 17: 208–213.https://doi.org/10.1134/S1990747823040074
  21. Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103.https://doi.org/10.1111/pala.12129
  22. Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507.https://doi.org/10.1093/icb/icj053
  23. Allentoft-Larsen MC, Gonzalez BC, Daniels J, Katija K, Osborn K, Worsaae K (2021) Muscular adaptations in swimming scale worms (Polynoidae, Annelida). R Soc Open Sci 8: 210541.https://doi.org/10.1098/rsos.210541
  24. Denes AS, Jékely G, Steinmetz PR, Raible F, Snyman H, Prud'homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129: 277–288.https://doi.org/10.1016/j.cell.2007.02.040
  25. Volkov EM, Nurullin LF, Nikolsky EE, Švandová I, Vyskočil F (2000) Participation of electrogenic Na+-K⁺-ATPase in the membrane potential of earthworm body wall muscles. Physiol Res 49: 481–484.http://www.biomed.cas.cz/physiolres/pdf/49/49_481.pdf
  26. Valtorta F, Pennuto M, Bonanomi D, Benfenati F (2004) Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays 26: 445–453.https://doi.org/10.1002/bies.20012
  27. Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70: 847–854. https://doi.org/10.1016/j.neuron.2011.04.001
  28. Krause M, Wernig A (1985) The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J Neurocytol 14: 765–780. https://doi.org/10.1007/bf01170827
  29. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463: 1084–1088.https://doi.org/10.1038/nature08744

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fluorescent triple labeling of a preparation of somatic muscle cells of the earthworm Lumbricus terrestris. (a) — Immunolabeling with antibodies to calmodulin (green); arrows indicate areas of more intense labeling; (b) — immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) — labeling of TMP-α-B of postsynaptic nAChRs (blue); (d) — superposition of images (a) and (b); (e) — superposition of images (a) and (c); (f) — superposition of images (a), (b), and (c). Scale bar 20 µm.

Download (968KB)
3. Fig. 2. Detection of Ca²⁺-calmodulin-dependent protein kinase type 1 by fluorescent triple labeling of earthworm somatic muscle cell preparation. (a) — Immunolabeling with antibodies to Ca²⁺-calmodulin-dependent protein kinase type 1 (green); arrows indicate sites of more intense labeling; (b) — immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) — TMP-α-B labeling of postsynaptic nAChRs (blue); (d) — superposition of images (a) and (b); (e) — superposition of images (a) and (c); (f) — superposition of images (a), (b) and (c). Scale bar 20 µm.

Download (1MB)
4. Fig. 3. The presence of Ca²⁺-calmodulin-dependent protein kinase type 2 in triple fluorescent labeling of earthworm somatic muscle cell preparation. (a) – Immunolabeling with antibodies to Ca²⁺-calmodulin-dependent protein kinase type 2 (green); (b) – immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) – labeling of nAChRs using TMP-α-B (blue); (d) – superposition of images (a) and (b); (e) – superposition of images (a) and (c); (f) – superposition of images (a), (b) and (c). Scale bar 20 µm.

Download (688KB)
5. Fig. 4. Detection of synaptotagmin type 2 by fluorescent triple labeling of earthworm somatic muscle cell preparation. (a) Immunolabeling with antibodies to synaptotagmin 2 (green); (b) Immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) Labeling of nAChRs with TMP-α-B (blue); (d) Overlay of images (a) and (b); (e) Overlay of images (a) and (c); (f) Overlay of images (a), (b), and (c). Scale bar 20 µm.

Download (731KB)
6. Fig. 5. Detection of synaptotagmin type 7 by fluorescent triple labeling of earthworm somatic muscle cell preparation. (a) – Immunolabeling with antibodies to synaptotagmin 7 (green); arrows indicate areas of more intense staining; (b) – immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) – labeling of nAChRs using TMP-α-B (blue); (d) – superposition of images (a) and (b); (e) – superposition of images (a) and (c); (f) – superposition of images (a), (b) and (c). Scale bar 20 µm.

Download (783KB)
7. Fig. 6. The presence of calcineurin A in fluorescent triple labeling of earthworm somatic muscle cell preparation. (a) – Immunolabeling with antibodies to calcineurin A (green); (b) – immunolabeling with antibodies to the presynaptic protein synaptophysin (red); (c) – labeling of nAChRs using TMP-α-B (blue); (d) – superposition of images (a) and (b); (e) – superposition of images (a) and (c); (f) – superposition of images (a), (b) and (c). Scale bar 20 µm.

Download (815KB)

Copyright (c) 2024 Russian Academy of Sciences