Иммунофлуоресцентное выявление и определение локализации Ca²⁺-сенсорных белков в двигательной мускулатуре дождевого червя Lumbricus terrestris
- Авторы: Нуруллин Л.Ф.1,2, Алмазов Н.Д.2, Волков Е.М.2
-
Учреждения:
- Казанский институт биохимии и биофизики — обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”
- Казанский государственный медицинский университет
- Выпуск: Том 60, № 4 (2024)
- Страницы: 383–391
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://cijournal.ru/0044-4529/article/view/648095
- DOI: https://doi.org/10.31857/S0044452924040053
- EDN: https://elibrary.ru/YQDYUI
- ID: 648095
Цитировать
Аннотация
Методом иммунофлуоресцентного мечения препаратов соматической мышцы дождевого червя показано присутствие в последних кальмодулина, Ca²⁺-кальмодулин зависимой протеинкиназы типа 1 и типа 2, синаптотагмина типа 2 и типа 7 и кальциневрина А. Данные белки определяются как в синаптических, так и во внесинаптических регионах двигательной мышцы. Однако для синаптотагмина типа 2 и типа 7, кальциневрина А установлена их преимущественная локализация в зоне нервно-мышечных синапсов. При этом синаптическая локализация для синаптотагмина типа 7 и кальциневрина А выражена наиболее отчетливо.
Ключевые слова
Полный текст

Об авторах
Л. Ф. Нуруллин
Казанский институт биохимии и биофизики — обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”; Казанский государственный медицинский университет
Автор, ответственный за переписку.
Email: lenizn@yandex.ru
Россия, Казань; Казань
Н. Д. Алмазов
Казанский государственный медицинский университет
Email: lenizn@yandex.ru
Россия, Казань
Е. М. Волков
Казанский государственный медицинский университет
Email: euroworm@mail.ru
Россия, Казань
Список литературы
- Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. https://doi.org/10.1101/cshperspect.a011353
- DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41: 2265–2272.
- Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H (2021) The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 14: 691363.https://doi.org/10.3389/fnmol.2021.691363
- Sakaba T, Neher E (2001) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32: 1119–1131.https://doi.org/10.1016/s0896-6273(01)00543-8
- Liu Q, Chen B, Ge Q, Wang ZW (2007) Presynaptic Ca²⁺/calmodulin-dependent protein kinase II modulates neurotransmitter release byactivating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci 27: 10404–10413.https://doi.org/10.1523/jneurosci.5634-06.2007
- Fujii T, Sakurai A, Littleton JT, Yoshihara M (2021) Synaptotagmin 7 switches short-term synaptic plasticity from depression to facilitation by suppressing synaptic transmission. Sci Rep 11: 4059.https://doi.org/10.1038/s41598-021-83397-5
- Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Südhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca²⁺ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26: 13493–13504. https://doi.org/10.1523/jneurosci.3519-06.2006
- Martinez-Pena y Valenzuela I, Mouslim C, Akaaboune M (2010) Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo. J Neurosci 30: 12455–12465.https://doi.org/10.1523/jneurosci.3309-10.2010
- Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA (1993) Identification of novel isoforms of the delta subunit of Ca²⁺/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem 268: 14443–14449. http://dx.doi.org/10.1016/S0021-9258(19)85259-6
- Bayer KU, Harbers K, Schulman H (1998) alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 17: 5598–5605. https://doi.org/10.1093%2Femboj%2F17.19.5598
- Martinez-Pena y Valenzuela I, Akaaboune M (2021) The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 10: 358.https://doi.org/10.3390/cells10020358
- Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57: 94–107.https://doi.org/10.1016/j.neuron.2007.11.016
- Nesler KR, Starke EL, Boin NG, Ritz M, Barbee SA (2016) Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 76: 33–41.https://doi.org/10.1016/j.mcn.2016.08.007
- Chen C, Arai I, Satterfield R, Young SM Jr, Jonas P (2017) Synaptotagmin 2 Is the Fast Ca²⁺ Sensor at a Central Inhibitory Synapse. Cell Rep 18: 723–736.https://doi.org/10.1016/j.celrep.2016.12.067
- Xu J, Mashimo T, Südhof TC (2007) Synaptotagmin-1, –2, and –9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54: 567–581.https://doi.org/10.1016/j.neuron.2007.05.004
- Weyrer C, Turecek J, Harrison B, Regehr WG (2021) Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse. Cell Rep 36: 109719.https://doi.org/10.1016/j.celrep.2021.109719
- Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18: 124–134. https://doi.org/10.1016/S0165-6147(97)01046-8
- Creamer TP (2020) Calcineurin. Cell Commun Signal 18: 137.https://doi.org/10.1186/s12964-020-00636-4
- Volkov EM, Nurullin LF (2005) Effects of cholinergic receptor agonists and antagonists on miniature stimulatory postsynaptic ionic currents in somatic muscle cells of Lumbricus terrestris. Bull Exp Biol Med 139: 360–362.https://doi.org/10.1007/s10517-005-0294-2
- Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent Identification of GABAergic Structures in the Somatic Muscle of the Earthworm Lumbricus terrestris. Biochem (Mosc) Suppl Ser A Membr Cell Biol 17: 208–213.https://doi.org/10.1134/S1990747823040074
- Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103.https://doi.org/10.1111/pala.12129
- Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507.https://doi.org/10.1093/icb/icj053
- Allentoft-Larsen MC, Gonzalez BC, Daniels J, Katija K, Osborn K, Worsaae K (2021) Muscular adaptations in swimming scale worms (Polynoidae, Annelida). R Soc Open Sci 8: 210541.https://doi.org/10.1098/rsos.210541
- Denes AS, Jékely G, Steinmetz PR, Raible F, Snyman H, Prud'homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129: 277–288.https://doi.org/10.1016/j.cell.2007.02.040
- Volkov EM, Nurullin LF, Nikolsky EE, Švandová I, Vyskočil F (2000) Participation of electrogenic Na+-K⁺-ATPase in the membrane potential of earthworm body wall muscles. Physiol Res 49: 481–484.http://www.biomed.cas.cz/physiolres/pdf/49/49_481.pdf
- Valtorta F, Pennuto M, Bonanomi D, Benfenati F (2004) Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays 26: 445–453.https://doi.org/10.1002/bies.20012
- Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70: 847–854. https://doi.org/10.1016/j.neuron.2011.04.001
- Krause M, Wernig A (1985) The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J Neurocytol 14: 765–780. https://doi.org/10.1007/bf01170827
- Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463: 1084–1088.https://doi.org/10.1038/nature08744
Дополнительные файлы
