Effect of additional dielectric layer and grounded shield on rf characteristics of GaAs microwave monolithic integrated circuit elements in 3D-integrated modules

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The effect of coating GaAs monolithic integrated circuit with a benzocyclobutene dielectric layer and grounded copper shield is investigated. Using electromagnetic simulation up to 40 GHz, changes of RF characteristics of microstrip and coplanar transmission lines, a Marshand balun, and a bandpass filter due to coating are demonstrated. It is shown that from the performance variation viewpoint, the application of lines is preferred in GaAs monolithic integrated circuits used in 3D-integrated modules with such the coating.

Толық мәтін

Рұқсат жабық

Авторлар туралы

F. Sheyerman

Tomsk State University of Control Systems and Radioelectronics

Хат алмасуға жауапты Автор.
Email: fish@tusur.ru
Ресей, Lenin Avenue, 40, Tomsk, 634050

N. Goleneva

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Ресей, Lenin Avenue, 40, Tomsk, 634050

A. Kokolov

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Ресей, Lenin Avenue, 40, Tomsk, 634050

L. Babak

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Ресей, Lenin Avenue, 40, Tomsk, 634050

M. Cherkashin

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Ресей, Lenin Avenue, 40, Tomsk, 634050

P. Panasenko

SC «MERI»

Email: fish@tusur.ru
Ресей, Akademika Valieva Str., 6/1, Zelenograd, 124460

А. Volosov

SC «MERI»

Email: fish@tusur.ru
Ресей, Akademika Valieva Str., 6/1, Zelenograd, 124460

Әдебиет тізімі

  1. Воробьев С. // Электроника НТБ. 2018. № 7. С. 142.
  2. Nguen C. Radio-frequency Integrated-circuit Engineering. New Jersey: John Wiley&Sons Inc., 2015.
  3. Банков С.Е., Курушин А.А. Электродинамика для пользователей САПР СВЧ. М.: Солон-Экспресс, 2017.
  4. Svensson С., Dermer G.E. // IEEE Trans. 2001. V. AP-24. № 2. P. 191.
  5. Djordjevic A.R., Biljic R.M., Likar-Smiljanic V.D., Sarkar T.K. // IEEE Trans. 2001. V. EC-43. № 4. P. 662.
  6. Huang С.H., Chen C.H., Horng T.S. // Proc. 2009 Asia Pacific Microwave Conf. Singapore. 7–10 Dec. N.Y.: IEEE, 2009. P. 1004.
  7. Маттей Д.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. М.: Связь, 1972.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Passive devices of the MMIC: MPL (a); KPL (b); balun (c); bandpass filter on the MPL with side coupling (d).

Жүктеу (214KB)
3. Fig. 2. Schematic diagram of the multilayer structure for electromagnetic modeling in the Momentum program as part of the ADS CAD system.

Жүктеу (226KB)
4. Fig. 3. Design for modeling a transmission line with an upper shield in GaAs MMIC and frequency dependences of the parameters |S11|, |S21| for the MPL (a–c) and KPL (d–e): without VSV (1), with a VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5) and 100 μm (without VSV) (6).

Жүктеу (355KB)
5. Fig. 4. Dependences of the average value of the wave impedance of the MPL (1, 2) and KPL (3, 4) with a screen in the X- (1, 3) and Ka-bands (2, 4) on the thickness t of the VSV layer (a), the numbers near the points indicate the average values of Z0 in the specified frequency subranges, in Ohms; the surface of the dependence of the wave impedance of the MPL on t and f for the frequency range of 8 ... 12 GHz (b).

Жүктеу (284KB)
6. Fig. 5. Frequency characteristics of the parameters of the S21 (a) and S31 (b) ST parameters: without VSV (1), with VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5) .

Жүктеу (131KB)
7. Fig. 6. Amplitude imbalance δS (a) and phase difference Dφ (b) of signals at the ST output: without VSV (1) and with VSV layer at t = 5 μm (2).

Жүктеу (111KB)
8. Fig. 7. The influence of the VSV layer and the screen on the frequency response of a bandpass filter without VSV (1), with a VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5).

Жүктеу (91KB)

© Russian Academy of Sciences, 2025