Effect of additional dielectric layer and grounded shield on rf characteristics of GaAs microwave monolithic integrated circuit elements in 3D-integrated modules

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of coating GaAs monolithic integrated circuit with a benzocyclobutene dielectric layer and grounded copper shield is investigated. Using electromagnetic simulation up to 40 GHz, changes of RF characteristics of microstrip and coplanar transmission lines, a Marshand balun, and a bandpass filter due to coating are demonstrated. It is shown that from the performance variation viewpoint, the application of lines is preferred in GaAs monolithic integrated circuits used in 3D-integrated modules with such the coating.

Full Text

Restricted Access

About the authors

F. I. Sheyerman

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: fish@tusur.ru
Russian Federation, Lenin Avenue, 40, Tomsk, 634050

N. V. Goleneva

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Russian Federation, Lenin Avenue, 40, Tomsk, 634050

A. А. Kokolov

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Russian Federation, Lenin Avenue, 40, Tomsk, 634050

L. I. Babak

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Russian Federation, Lenin Avenue, 40, Tomsk, 634050

M. V. Cherkashin

Tomsk State University of Control Systems and Radioelectronics

Email: fish@tusur.ru
Russian Federation, Lenin Avenue, 40, Tomsk, 634050

P. V. Panasenko

SC «MERI»

Email: fish@tusur.ru
Russian Federation, Akademika Valieva Str., 6/1, Zelenograd, 124460

А. V. Volosov

SC «MERI»

Email: fish@tusur.ru
Russian Federation, Akademika Valieva Str., 6/1, Zelenograd, 124460

References

  1. Воробьев С. // Электроника НТБ. 2018. № 7. С. 142.
  2. Nguen C. Radio-frequency Integrated-circuit Engineering. New Jersey: John Wiley&Sons Inc., 2015.
  3. Банков С.Е., Курушин А.А. Электродинамика для пользователей САПР СВЧ. М.: Солон-Экспресс, 2017.
  4. Svensson С., Dermer G.E. // IEEE Trans. 2001. V. AP-24. № 2. P. 191.
  5. Djordjevic A.R., Biljic R.M., Likar-Smiljanic V.D., Sarkar T.K. // IEEE Trans. 2001. V. EC-43. № 4. P. 662.
  6. Huang С.H., Chen C.H., Horng T.S. // Proc. 2009 Asia Pacific Microwave Conf. Singapore. 7–10 Dec. N.Y.: IEEE, 2009. P. 1004.
  7. Маттей Д.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. М.: Связь, 1972.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Passive devices of the MMIC: MPL (a); KPL (b); balun (c); bandpass filter on the MPL with side coupling (d).

Download (214KB)
3. Fig. 2. Schematic diagram of the multilayer structure for electromagnetic modeling in the Momentum program as part of the ADS CAD system.

Download (226KB)
4. Fig. 3. Design for modeling a transmission line with an upper shield in GaAs MMIC and frequency dependences of the parameters |S11|, |S21| for the MPL (a–c) and KPL (d–e): without VSV (1), with a VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5) and 100 μm (without VSV) (6).

Download (355KB)
5. Fig. 4. Dependences of the average value of the wave impedance of the MPL (1, 2) and KPL (3, 4) with a screen in the X- (1, 3) and Ka-bands (2, 4) on the thickness t of the VSV layer (a), the numbers near the points indicate the average values of Z0 in the specified frequency subranges, in Ohms; the surface of the dependence of the wave impedance of the MPL on t and f for the frequency range of 8 ... 12 GHz (b).

Download (284KB)
6. Fig. 5. Frequency characteristics of the parameters of the S21 (a) and S31 (b) ST parameters: without VSV (1), with VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5) .

Download (131KB)
7. Fig. 6. Amplitude imbalance δS (a) and phase difference Dφ (b) of signals at the ST output: without VSV (1) and with VSV layer at t = 5 μm (2).

Download (111KB)
8. Fig. 7. The influence of the VSV layer and the screen on the frequency response of a bandpass filter without VSV (1), with a VSV layer at t = 5 μm (2), 25 μm (3), 50 μm (4), 100 μm (5).

Download (91KB)

Copyright (c) 2025 Russian Academy of Sciences