Рекомбинационно-ускоренное скольжение дислокаций в 4H-SiC и GaN при облучении электронным пучком
- Авторы: Куланчиков Ю.О.1, Вергелес П.С.1, Якимов Е.Е.1, Якимов Е.Б.1
-
Учреждения:
- Институт проблем технологии микроэлектроники и особочистых материалов РАН
- Выпуск: Том 70, № 4 (2025)
- Страницы: 670–678
- Раздел: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://cijournal.ru/0023-4761/article/view/688091
- DOI: https://doi.org/10.31857/S0023476125040164
- EDN: https://elibrary.ru/JHKDCY
- ID: 688091
Цитировать
Полный текст



Аннотация
Проведен анализ исследований рекомбинационно-ускоренного движения дислокаций в GaN и 4H-SiC. Показано, что в обоих кристаллах при облучении низкоэнергетичным электронным пучком дислокации могут смещаться при температуре жидкого азота. Оценены энергии активации скольжения дислокаций, стимулированного облучением электронным пучком. Приведены результаты, демонстрирующие практически безактивационную миграцию двойных перегибов вдоль 30°-ной дислокации с кремниевым ядром в 4H-SiC. Показано, что на движение дислокаций в GaN как под действием сдвиговых напряжений, так и при облучении существенное влияние оказывают локализованные препятствия. Неравновесные носители заряда, введенные облучением в GaN, не только способствуют преодолению барьера Пайерлса, но и стимулируют открепление дислокаций от препятствий.
Полный текст

Об авторах
Ю. О. Куланчиков
Институт проблем технологии микроэлектроники и особочистых материалов РАН
Email: yakimov@iptm.ru
Россия, Черноголовка
П. С. Вергелес
Институт проблем технологии микроэлектроники и особочистых материалов РАН
Email: yakimov@iptm.ru
Россия, Черноголовка
Е. Е. Якимов
Институт проблем технологии микроэлектроники и особочистых материалов РАН
Email: yakimov@iptm.ru
Россия, Черноголовка
Е. Б. Якимов
Институт проблем технологии микроэлектроники и особочистых материалов РАН
Автор, ответственный за переписку.
Email: yakimov@iptm.ru
Россия, Черноголовка
Список литературы
- Alexander H., Teichler H. // Handbook of Semiconductor Technology / Eds. Jackson K.A., Schroter W. Wiley-VCH, 2000. P. 291. https://doi.org/10.1002/9783527621842.ch6
- Maeda K. // Materials and Reliability Handbook for Semiconductor Optical and Electron Devices / Еds. Ueda O., Pearton S.J. New York: Springer Science and Business Media, 2013. P. 263. https://doi.org/10.1007/978-1-4614-4337-7_9
- Eberlein T.A.G., Jones R., Blumenau A.T. et al. // Appl. Phys. Lett. 2006. V. 88. 082113. https://doi.org/10.1063/1.2179115
- Skowronski M., Ha S. // J. Appl. Phys. 2006. V. 99. 011101. https://doi.org/10.1063/1.2159578
- Camassel J., Juillaguet S. // J. Phys. D. 2007. V. 40. P. 6264. https://doi.org/10.1088/0022-3727/40/20/S11
- Callahan P.G., Haidet B.B., Jung D. et al. // Phys. Rev. Mater. 2018. V. 2. 081601(R). https://doi.org/10.1103/PhysRevMaterials.2.081601
- Ha S., Benamara M., Skowronski M. // Appl. Phys. Lett. 2003. V. 83. P. 4957. https://doi.org/10.1063/1.1633969
- Yakimov E.B. // J. Alloys Compd. 2015. V. 627. P. 344. https://doi.org/10.1016/j.jallcom.2014.11.229
- Якимов Е.Б. // Кристаллография. 2021. Т. 66. № 4. С. 540. https://doi.org/10.31857/S0023476121040226
- Egerton R.F., Li P., Malac M. // Micron. 2004. V. 35. P. 399. https://doi.org/10.1016/j.micron.2004.02.003
- Tokunaga T., Narushima T., Yonezawa T. et al. // J. Microscopy. 2012. V. 248. Pt. 3. P. 228. https://doi.org/10.1111/j.1365-2818.2012.03666.x
- Bouscaud D., Pesci R., Berveiller S. et al. // Ultramicroscopy. 2012. V. 115. P. 115. https://doi.org/
- Yakimov E.E., Yakimov E.B. // J. Alloys Compd. 2020. V. 837. 155470. https://doi.org/10.1016/j.jallcom.2020.155470
- Ishikawa Y., Sudo M., Yao Y.-Z. et al // J. Appl. Phys. 2018. V. 123. 225101. https://doi.org/10.1063/1.5026448
- Yakimov E.B. // Phys. Status Solidi. C. 2017. V. 14. 1600266. https://doi.org/10.1002/pssc.201600266
- Якимов Е.Б. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2018. № 10. С. 66. https://doi.org/10.1134/S0207352818100219
- Davidson S.M., Dimitriadis C.A. // J. Microsc. 1980. V. 118. P. 275. https://doi.org/10.1111/j.1365-2818.1980.tb00274.x
- Yakimov E.B., Polyakov A.Y., Shchemerov I.V. et al. // Appl. Phys. Lett. 2021. V. 118. 202106. https://doi.org/10.1063/5.0053301
- Gsponer A., Knopf M., Gagg P. et al. // Nucl. Instrum. Methods Phys. Res. A. 2024. V. 1064. 169412. https://doi.org/10.1016/j.nima.2024.169412
- Yakimov E.B., Regula G., Pichaud B. // J. Appl. Phys. 2013. V. 114. 084903. https://doi.org/10.1063/1.4818306
- Idrissi H., Pichaud B., Regula G., Lancin M. // J. Appl. Phys. 2007. V. 101. 113533. https://doi.org/10.1063/1.2745266
- Orlov V.I., Regula G., Yakimov E.B. // Acta Mater. 2017. V. 139. P. 155. https://doi.org/10.1016/j.actamat.2017.07.046
- Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2022. V. 219. 2200119. https://doi.org/10.1002/pssa.202200119
- Orlov V.I., Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2019. V. 216. 1900151. https://doi.org/10.1002/pssa.201900151
- Sudo M., Ishikawa Y., Yao Y.-Z. et al. // Mater. Sci. Forum. 2018. V. 924. P. 151. https://doi.org/10.4028/www.scientific.net/MSF.924.151
- Yakimov E.E., Yakimov E.B. // J. Phys. D. 2022. V. 55. 245101. https://doi.org/10.1088/1361-6463/ac5c1b
- Yamashita Y., Nakata R., Nishikawa T. et al. // J. Appl. Phys. 2018. V. 123. 161580. https://doi.org/10.1063/1.5010861
- Konishi K., Fujita R., Shima A. et al. // Mater. Sci. Forum. 2017. V. 897. P. 214. https://doi.org/10.4028/www.scientific.net/MSF.897.214
- Tawara T., Matsunaga S., Fujimoto T. et al. // J. Appl. Phys. 2018. V. 123. 025707. https://doi.org/10.1063/1.5009365
- Yakimov E.E., Yakimov E.B., Orlov V.I., Gogova D. // Superlattices and Microstructures. 2018. V. 120. P. 7. https://doi.org/10.1016/j.spmi.2018.05.014
- Ohno Y., Yonenaga I., Miyao K. et al. // Appl. Phys. Lett. 2012. V. 101. 042102. https://doi.org/10.1063/1.4737938
- Regula G., Lancin M., Pichaud B. et al. // Philos. Mag. 2013. V. 93. P. 1317. https://doi.org/10.1080/14786435.2012.745018
- Savini G. // Phys. Status Solidi. C. 2007. V. 4. P. 2883. https://doi.org/10.1002/pssc.200675433
- Yang J., Izumi S., Muranaka R. et al. // Mech. Eng. J. 2015. V. 2. № 4. P. 1. https://doi.org/10.1299/mej.15-00183
- Miao M.S., Limpijumnong S., Lambrecht W.R.L. // Appl. Phys. Lett. 2001. V. 79. P. 4360. https://doi.org/10.1063/1.1427749
- Galeckas A., Linnoris J., Pirouz P. // Phys. Rev. Lett. 2006. V. 96. 025502. https://doi.org/10.1103/PhysRevLett.96.025502
- Caldwell J.D., Stahlbush R.E., Ancona M.G. et al. // J. Appl. Phys. 2010. V. 108. 044503 https://doi.org/10.1063/1.3467793
- Pirouz P. // Phys. Status Solidi. A. 2013. V. 210. P. 181. https://doi.org/10.10.1002/pssa.201200501
- Mannen Y., Shimada K., Asada K. et al. // J. Appl. Phys. 2019. V. 125. 085705. https://doi.org/10.1063/1.5074150
- Iijima A., Kimoto T. // Appl. Phys. Lett. 2020. V. 116. 092105. https://doi.org/10.1063/1.5143690
- Miyanagi T., Kamata I., Tsuchida H. et al. // Appl. Phys. Lett. 2006. V. 89. 062104. https://doi.org/10.1063/1.2234740
- Caldwell J.D., Stahlbush R.E., Hobart K.D. et al. // Appl. Phys. Lett. 2007. V. 90. 143519. https://doi.org/10.1063/1.2719650
- Caldwell J.D., Glembocki O.J., Stahlbush R.E. et al. // J. Electron. Mater. 2008. V. 37. P. 699. https://doi.org/10.1007/s11664-007-0311-5
- Okada A., Nishio J., Iijima R. et al. // Jpn. J. Appl. Phys. 2018. V. 57. 061301. https://doi.org//10.7567/JJAP.57.061301
- Feklisova O.V., Yakimov E.E., Yakimov E.B. // Appl. Phys. Lett. 2020. V. 116. 172101. https://doi.org/10.1063/5.0004423
- Maeda K., Murata K., Kamata I. et al. // Appl. Phys. Express. 2021. V. 14. 044001. https://doi.org/10.35848/1882-0786/abeaf8
- Iijima A., Kimoto T. // J. Appl. Phys. 2019. V. 126. 105703. https://doi.org/10.1063/1.5117350
- Bradby J.E., Kucheyev S.O., Williams J.S. et al. // Appl. Phys. Lett. 2002. V. 80. P. 383. https://doi.org/10.1063/1.1436280
- Jahn U., Trampert A., Wagner T. et al. // Phys. Status Solidi. A. 2002. V. 192. P. 79. https://doi.org/10.1002/1521-396X(200207)192:1<79::AID-PSSA79>3.0.CO;2-5
- Jian S.R. // Appl. Surf. Sci. 2008. V. 254. P. 6749. https://doi.org/10.1016/j.apsusc.2008.04.078
- Huang J., Xu K., Gong X.J. et al. // Appl. Phys. Lett. 2011. V. 98. 221906. https://doi.org/10.1063/1.3593381
- Orlov V.I., Vergeles P.S., Yakimov E.B. et al. // Phys. Status Solidi. A. 2019. V. 216. 1900163. https://doi.org/10.1002/pssa.201900163
- Orlov V.I., Polyakov A.Y., Vergeles P.S. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. 026004. https://doi.org/10.1149/2162-8777/abe4e9
- Yakimov E.B., Kulanchikov Y.O., Vergeles P.S. // Micromachines. 2023. V. 14. 1190. https://doi.org/ 10.3390/mi14061190
- Maeda K., Suzuki K., Ichihara M. et al. // Phys. B. Condens. Matter. 1999. V. 273. P. 134. http://dx.doi.org/10.1016/S0921-4526(99)00424-X
- Tomiya S., Goto S., Takeya M. et al. // Phys. Status Solidi. A. 2003. V. 200. P. 139. http://dx.doi.org/10.1002/pssa.200303322
- Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Appl. Phys. Lett. 2015. V. 106. 132101. http://dx.doi.org/10.1063/1.4916632
- Якимов Е.Б., Вергелес П.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2016. № 9. С. 81. http://dx.doi.org/10.7868/S0207352816090171
- Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Jpn. J. Appl. Phys. 2016. V. 55. 05FM03. http://doi.org/10.7567/JJAP.55.05FM03
- Medvedev O.S., Vyvenko O.F., Bondarenko A.S. et al. // AIP Conf. Proc. 2016. V. 1748. 020011. http://dx.doi.org/10.1063/1.4954345
- Vergeles P.S., Orlov V.I., Polyakov A.Y. et al. // J. Alloys Compd. 2019. V. 776. P. 181. http://doi.org/10.1063/1.4954345
- Vergeles P.S., Kulanchikov Yu.O., Polyakov A.Y. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. 015003. http://dx.doi.org/10.1149/2162-8777/ac4bae
Дополнительные файлы
