Recombination-enhanced of dislocation glide in 4H-SiC and GaN under electron beam irradiation
- 作者: Kulanchikov Y.O.1, Vergeles P.S.1, Yakimov E.E.1, Yakimov E.B.1
-
隶属关系:
- Institute of Microelectronics Technology and High-Purity Materials, RAS
- 期: 卷 70, 编号 4 (2025)
- 页面: 670–678
- 栏目: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://cijournal.ru/0023-4761/article/view/688091
- DOI: https://doi.org/10.31857/S0023476125040164
- EDN: https://elibrary.ru/JHKDCY
- ID: 688091
如何引用文章
详细
The analysis of the investigations of recombination-enhanced dislocation transport in GaN and 4H-SiC is carried out. It is shown that in both crystals, when irradiated with a low-energy electron beam, dislocations can shift even at liquid nitrogen temperature. The activation energies of dislocation glide stimulated by electron beam irradiation are estimated. The results are presented demonstrating practically activation-free migration of double kinks along a 30° partial dislocation with a silicon core in 4H-SiC. It is shown that localized obstacles significantly affect the dislocation transport in GaN both under the action of shear stresses and under irradiation. Nonequilibrium charge carriers introduced into GaN by irradiation not only help to overcome the Peierls barrier, but also stimulate the detachment of dislocations from obstacles.
全文:

作者简介
Y. Kulanchikov
Institute of Microelectronics Technology and High-Purity Materials, RAS
Email: yakimov@iptm.ru
俄罗斯联邦, Chernogolovka
P. Vergeles
Institute of Microelectronics Technology and High-Purity Materials, RAS
Email: yakimov@iptm.ru
俄罗斯联邦, Chernogolovka
E. Yakimov
Institute of Microelectronics Technology and High-Purity Materials, RAS
Email: yakimov@iptm.ru
俄罗斯联邦, Chernogolovka
E. Yakimov
Institute of Microelectronics Technology and High-Purity Materials, RAS
编辑信件的主要联系方式.
Email: yakimov@iptm.ru
俄罗斯联邦, Chernogolovka
参考
- Alexander H., Teichler H. // Handbook of Semiconductor Technology / Eds. Jackson K.A., Schroter W. Wiley-VCH, 2000. P. 291. https://doi.org/10.1002/9783527621842.ch6
- Maeda K. // Materials and Reliability Handbook for Semiconductor Optical and Electron Devices / Еds. Ueda O., Pearton S.J. New York: Springer Science and Business Media, 2013. P. 263. https://doi.org/10.1007/978-1-4614-4337-7_9
- Eberlein T.A.G., Jones R., Blumenau A.T. et al. // Appl. Phys. Lett. 2006. V. 88. 082113. https://doi.org/10.1063/1.2179115
- Skowronski M., Ha S. // J. Appl. Phys. 2006. V. 99. 011101. https://doi.org/10.1063/1.2159578
- Camassel J., Juillaguet S. // J. Phys. D. 2007. V. 40. P. 6264. https://doi.org/10.1088/0022-3727/40/20/S11
- Callahan P.G., Haidet B.B., Jung D. et al. // Phys. Rev. Mater. 2018. V. 2. 081601(R). https://doi.org/10.1103/PhysRevMaterials.2.081601
- Ha S., Benamara M., Skowronski M. // Appl. Phys. Lett. 2003. V. 83. P. 4957. https://doi.org/10.1063/1.1633969
- Yakimov E.B. // J. Alloys Compd. 2015. V. 627. P. 344. https://doi.org/10.1016/j.jallcom.2014.11.229
- Якимов Е.Б. // Кристаллография. 2021. Т. 66. № 4. С. 540. https://doi.org/10.31857/S0023476121040226
- Egerton R.F., Li P., Malac M. // Micron. 2004. V. 35. P. 399. https://doi.org/10.1016/j.micron.2004.02.003
- Tokunaga T., Narushima T., Yonezawa T. et al. // J. Microscopy. 2012. V. 248. Pt. 3. P. 228. https://doi.org/10.1111/j.1365-2818.2012.03666.x
- Bouscaud D., Pesci R., Berveiller S. et al. // Ultramicroscopy. 2012. V. 115. P. 115. https://doi.org/
- Yakimov E.E., Yakimov E.B. // J. Alloys Compd. 2020. V. 837. 155470. https://doi.org/10.1016/j.jallcom.2020.155470
- Ishikawa Y., Sudo M., Yao Y.-Z. et al // J. Appl. Phys. 2018. V. 123. 225101. https://doi.org/10.1063/1.5026448
- Yakimov E.B. // Phys. Status Solidi. C. 2017. V. 14. 1600266. https://doi.org/10.1002/pssc.201600266
- Якимов Е.Б. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2018. № 10. С. 66. https://doi.org/10.1134/S0207352818100219
- Davidson S.M., Dimitriadis C.A. // J. Microsc. 1980. V. 118. P. 275. https://doi.org/10.1111/j.1365-2818.1980.tb00274.x
- Yakimov E.B., Polyakov A.Y., Shchemerov I.V. et al. // Appl. Phys. Lett. 2021. V. 118. 202106. https://doi.org/10.1063/5.0053301
- Gsponer A., Knopf M., Gagg P. et al. // Nucl. Instrum. Methods Phys. Res. A. 2024. V. 1064. 169412. https://doi.org/10.1016/j.nima.2024.169412
- Yakimov E.B., Regula G., Pichaud B. // J. Appl. Phys. 2013. V. 114. 084903. https://doi.org/10.1063/1.4818306
- Idrissi H., Pichaud B., Regula G., Lancin M. // J. Appl. Phys. 2007. V. 101. 113533. https://doi.org/10.1063/1.2745266
- Orlov V.I., Regula G., Yakimov E.B. // Acta Mater. 2017. V. 139. P. 155. https://doi.org/10.1016/j.actamat.2017.07.046
- Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2022. V. 219. 2200119. https://doi.org/10.1002/pssa.202200119
- Orlov V.I., Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2019. V. 216. 1900151. https://doi.org/10.1002/pssa.201900151
- Sudo M., Ishikawa Y., Yao Y.-Z. et al. // Mater. Sci. Forum. 2018. V. 924. P. 151. https://doi.org/10.4028/www.scientific.net/MSF.924.151
- Yakimov E.E., Yakimov E.B. // J. Phys. D. 2022. V. 55. 245101. https://doi.org/10.1088/1361-6463/ac5c1b
- Yamashita Y., Nakata R., Nishikawa T. et al. // J. Appl. Phys. 2018. V. 123. 161580. https://doi.org/10.1063/1.5010861
- Konishi K., Fujita R., Shima A. et al. // Mater. Sci. Forum. 2017. V. 897. P. 214. https://doi.org/10.4028/www.scientific.net/MSF.897.214
- Tawara T., Matsunaga S., Fujimoto T. et al. // J. Appl. Phys. 2018. V. 123. 025707. https://doi.org/10.1063/1.5009365
- Yakimov E.E., Yakimov E.B., Orlov V.I., Gogova D. // Superlattices and Microstructures. 2018. V. 120. P. 7. https://doi.org/10.1016/j.spmi.2018.05.014
- Ohno Y., Yonenaga I., Miyao K. et al. // Appl. Phys. Lett. 2012. V. 101. 042102. https://doi.org/10.1063/1.4737938
- Regula G., Lancin M., Pichaud B. et al. // Philos. Mag. 2013. V. 93. P. 1317. https://doi.org/10.1080/14786435.2012.745018
- Savini G. // Phys. Status Solidi. C. 2007. V. 4. P. 2883. https://doi.org/10.1002/pssc.200675433
- Yang J., Izumi S., Muranaka R. et al. // Mech. Eng. J. 2015. V. 2. № 4. P. 1. https://doi.org/10.1299/mej.15-00183
- Miao M.S., Limpijumnong S., Lambrecht W.R.L. // Appl. Phys. Lett. 2001. V. 79. P. 4360. https://doi.org/10.1063/1.1427749
- Galeckas A., Linnoris J., Pirouz P. // Phys. Rev. Lett. 2006. V. 96. 025502. https://doi.org/10.1103/PhysRevLett.96.025502
- Caldwell J.D., Stahlbush R.E., Ancona M.G. et al. // J. Appl. Phys. 2010. V. 108. 044503 https://doi.org/10.1063/1.3467793
- Pirouz P. // Phys. Status Solidi. A. 2013. V. 210. P. 181. https://doi.org/10.10.1002/pssa.201200501
- Mannen Y., Shimada K., Asada K. et al. // J. Appl. Phys. 2019. V. 125. 085705. https://doi.org/10.1063/1.5074150
- Iijima A., Kimoto T. // Appl. Phys. Lett. 2020. V. 116. 092105. https://doi.org/10.1063/1.5143690
- Miyanagi T., Kamata I., Tsuchida H. et al. // Appl. Phys. Lett. 2006. V. 89. 062104. https://doi.org/10.1063/1.2234740
- Caldwell J.D., Stahlbush R.E., Hobart K.D. et al. // Appl. Phys. Lett. 2007. V. 90. 143519. https://doi.org/10.1063/1.2719650
- Caldwell J.D., Glembocki O.J., Stahlbush R.E. et al. // J. Electron. Mater. 2008. V. 37. P. 699. https://doi.org/10.1007/s11664-007-0311-5
- Okada A., Nishio J., Iijima R. et al. // Jpn. J. Appl. Phys. 2018. V. 57. 061301. https://doi.org//10.7567/JJAP.57.061301
- Feklisova O.V., Yakimov E.E., Yakimov E.B. // Appl. Phys. Lett. 2020. V. 116. 172101. https://doi.org/10.1063/5.0004423
- Maeda K., Murata K., Kamata I. et al. // Appl. Phys. Express. 2021. V. 14. 044001. https://doi.org/10.35848/1882-0786/abeaf8
- Iijima A., Kimoto T. // J. Appl. Phys. 2019. V. 126. 105703. https://doi.org/10.1063/1.5117350
- Bradby J.E., Kucheyev S.O., Williams J.S. et al. // Appl. Phys. Lett. 2002. V. 80. P. 383. https://doi.org/10.1063/1.1436280
- Jahn U., Trampert A., Wagner T. et al. // Phys. Status Solidi. A. 2002. V. 192. P. 79. https://doi.org/10.1002/1521-396X(200207)192:1<79::AID-PSSA79>3.0.CO;2-5
- Jian S.R. // Appl. Surf. Sci. 2008. V. 254. P. 6749. https://doi.org/10.1016/j.apsusc.2008.04.078
- Huang J., Xu K., Gong X.J. et al. // Appl. Phys. Lett. 2011. V. 98. 221906. https://doi.org/10.1063/1.3593381
- Orlov V.I., Vergeles P.S., Yakimov E.B. et al. // Phys. Status Solidi. A. 2019. V. 216. 1900163. https://doi.org/10.1002/pssa.201900163
- Orlov V.I., Polyakov A.Y., Vergeles P.S. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. 026004. https://doi.org/10.1149/2162-8777/abe4e9
- Yakimov E.B., Kulanchikov Y.O., Vergeles P.S. // Micromachines. 2023. V. 14. 1190. https://doi.org/ 10.3390/mi14061190
- Maeda K., Suzuki K., Ichihara M. et al. // Phys. B. Condens. Matter. 1999. V. 273. P. 134. http://dx.doi.org/10.1016/S0921-4526(99)00424-X
- Tomiya S., Goto S., Takeya M. et al. // Phys. Status Solidi. A. 2003. V. 200. P. 139. http://dx.doi.org/10.1002/pssa.200303322
- Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Appl. Phys. Lett. 2015. V. 106. 132101. http://dx.doi.org/10.1063/1.4916632
- Якимов Е.Б., Вергелес П.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2016. № 9. С. 81. http://dx.doi.org/10.7868/S0207352816090171
- Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Jpn. J. Appl. Phys. 2016. V. 55. 05FM03. http://doi.org/10.7567/JJAP.55.05FM03
- Medvedev O.S., Vyvenko O.F., Bondarenko A.S. et al. // AIP Conf. Proc. 2016. V. 1748. 020011. http://dx.doi.org/10.1063/1.4954345
- Vergeles P.S., Orlov V.I., Polyakov A.Y. et al. // J. Alloys Compd. 2019. V. 776. P. 181. http://doi.org/10.1063/1.4954345
- Vergeles P.S., Kulanchikov Yu.O., Polyakov A.Y. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. 015003. http://dx.doi.org/10.1149/2162-8777/ac4bae
补充文件
