Влияние дисперсионной среды и осаждающего агента на формирование золей и гелей прекурсора керамики системы цирконат-титанат свинца

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье приведены данные по влиянию выбора пары дисперсионная среда–осаждающий агент на закономерности протекания процесса золь–гель синтеза прекурсора керамики системы цирконата–титаната свинца. В качестве дисперсионных сред рассмотрены уксусная кислота и 2-метоксиэтанол, в качестве осаждающих агентов – этиленгликоль и вода соответственно. Рассмотрено изменение оптических, реологических свойств и размера частиц в процессе перехода золя в гель при различных концентрациях осаждающего агента. Показано, что природа и относительная концентрация дисперсионной среды и осаждающего агента позволяют в широких пределах регулировать свойства золей и гелей прекурсора соответствующей керамики и скорости процессов, существенно влияют на механизм образования и структуру образующихся гелей.

Полный текст

Доступ закрыт

Об авторах

Н. Д. Парамонова

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

Email: danilovegor1@gmail.com
Россия, ул. Электродная, 2, Москва, 111524

Е. А. Данилов

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

Автор, ответственный за переписку.
Email: danilovegor1@gmail.com
Россия, ул. Электродная, 2, Москва, 111524

Е. А. Иванова

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

Email: danilovegor1@gmail.com
Россия, ул. Электродная, 2, Москва, 111524

Список литературы

  1. Xu Z.J., Chu, R.Q., Li G.R. et al. Preparation of PZT powders and ceramics via a hybrid method of sol–gel and ultrasonic atomization // Mater. Sci. Eng. B. 2005. V. 117. № 2. P. 113–118. https://doi.org/10.1016/j.mseb.2004.10.019
  2. Huang C., Chen B., Wu L. Application feasibility of Pb(Zr ,Ti)O 3 ceramics fabricated from sol–gel derived powders using titanium and zirconium alkoxides // Mater. Res. Bull. 2004. V. 39. № 4–5. P. 523–532. https://doi.org/10.1016/j.materresbull.2004.01.002
  3. De-Qing Z., Shao-Jun W., Hong-Shan S. et al. Synthesis and mechanism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders // J. Solgel Sci. Technol. 2007. V. 41. № 2. P. 157–161. https://doi.org/10.1007/s10971-006-0521-y
  4. Bel Hadj Tahar R., Bel Hadj Tahar N., Ben Salah A. Low-temperature processing and characterization of single-phase PZT powders by sol-gel method // J. Mater. Sci. 2007. V. 42. № 23. P. 9801–9806. http://doi.org/10.1007/s10853-007-1966-2
  5. Bel-Hadj-Tahar R., Abboud M., Bouzitoun M. Thermal analysis of the crystallization kinetics of lead zirconate titanate powders prepared via sol-gel route // J. Therm. Anal. Calorim. 2020. V. 144. № 1. P. 127–138.http://doi.org/10.1007/s10973-020-09439-8
  6. Bel-Hadj-Tahar R., Abboud M., Shkir M. et al. Novel sol-gel synthesis of spherical lead titanate submicrometer powders // Crystals. 2021. V. 11. № 5. P. 484. https://doi.org/10.3390/cryst11050484
  7. Eid E.A., Ebied M. R., Kaid M.A. et al. Synthesis and microstructure characterization of sol-gel derived phase fractions in PZT nanopowders // Dig. J. Nanomater. Biostructures. 2020. V. 15. № 2. P. 465–470. https://doi.org/10.15251/djnb.2020.152.465
  8. Sachdeva A., Arora M., Tandon, R.P. Synthesis and characterization of sol–gel derived PZT nano powder // J. Nanosci. Nanotechnol. 2009. V. 9. № 11. P. 6631–6636. http://doi.org/10.1166/jnn.2009.1314
  9. Lee H.T., Wan I.L., Yoo H.K., Chin M.W. The seeding effects on the phase transformation of sol-gel derived PZT powder // Bull. Korean Chem. Soc. 2002. V. 23. P. 1078–1084. https://doi.org/10.5012/BKCS.2002.23.8.1078
  10. Парамонова Н.Д., Вартанян М.А., Данилов Е.А. Применение золь-гель метода для получения наноструктурированных пьезоматериалов системы цирконат-титанат свинца. Часть 1. Синтез порошков // Стекло и керамика. 2024. Т. 97. № 2 (1154). С. 47–56. https://doi.org/10.14489/glc.2024.02.pp.047-056
  11. Khan S.U., Mateen A., Qazi I. Sol–gel derived lead zirconate titanate: Processing, micrometer and nanometer scale patterning and characterization // Ceram. Int. 2016. V. 42. № 1. P. 185–193. https://doi.org/
  12. Hassen A., El Sayed A.M., Al-Ghamdi A., Shaban M. Synthesis of some functional oxides and their composites using sol-gel method. In: Sol-gel method: Resent advances. IntechOpen. 2023. http://doi.org/10.5772/intechopen.111384
  13. Парамонова Н.Д., Вартанян М.А., Данилов Е.А. Применение золь-гель метода для получения наноструктурированных пьезоматериалов системы цирконат-титанат свинца. Часть 2. Синтез пленочных и стержневидных структур // Стекло и керамика. 2024. Т. 97. № 6 (1158). С. 49–59. https://doi.org/10.14489/glc.2024.06.pp.049-059
  14. Wang Z., Zhu W., Zhao C., et al. Dense PZT thick films derived from sol-gel based nanocomposite process // Mater. Sci. Eng. B. 2003. V. 99. № 1–3. P. 56–62. https://doi.org/10.1016/S0921-5107(02)00568-8
  15. Wang Z., Miao J., Zhu W. Piezoelectric thick films and their application in MEMS // J. Eur. Ceram. Soc. 2007. V. 27. № 13–15. P. 3759–3764. https://doi.org/10.1016/j.jeurceramsoc.2007.02.067
  16. Wu A., Miranda Salvado I.M., Vilarinho P.M. et al. Processing and seeding effects on crystallisation of PZT thin films from sol-gel method // J. Eur. Ceram. Soc. 1997. V. 17. № 12. P. 1443–1452. https://doi.org/10.1016/S0955-2219(97)00027-7
  17. Belleville P., Bigarre J., Boy P., et al. Stable PZT sol for preparing reproducible high-permittivity perovskite-based thin films // J. Solgel Sci. Technol. 2007. V. 43. № 2. P. 213–221. https://doi.org/10.1007/s10971-007-1580-4
  18. Tsai C.-C., Chu S.-Y., Hong C.-S. et al. Effects of annealing temperature and pressure of vacuum infiltration on the electrical properties of Pb(Zr 0.52 Ti 0.48 )O 3 thick films prepared via a modified sol-gel method // Thin Solid Films. 2020. V. 706. P. 138071. https://doi.org/10.1016/j.tsf.2020.138071
  19. Zhang Y.-J., Wang Z.J., Bai Y. et al. Enhanced electrical properties of epitaxial PZT films deposited by sol-gel method and crystallized by microwave irradiation // J. Alloys Compd. 2018. V. 757. P. 24–30.https://doi.org/10.1016/j.jallcom.2018.05.047
  20. Yu S., Yao K., Shannigrahi S. et al. Effects of poly(ethyleneglycol) additive molecular weight on the microstructure and properties of sol-gel-derived lead zirconate titanate thin films // J. Mater. Res. 2003. V. 18. № 3. P. 737–741. http://doi.org/10.1557/JMR.2003.0100
  21. Hsu Y.-C. 1–10 μm PZT films grown by modified sol-gel method // Sens. Mater. 2006. V.18. № 6. P. 313–327.
  22. Bel-Hadj-Tahar R., Abboud M., Belhadj Tahar N. Microstructural and electrical properties of nanostructured lead zirconate titanate composite thick films processed for MEMS applications via hybrid sol–gel approach // J. Alloys Compd. 2020. V. 830. P. 154695. https://doi.org/10.1016/j.jallcom.2020.154695
  23. Bel-Hadj-Tahar R. Morphological and electrical investigations of lead zirconium titanate thin films processed at low temperature by a novel sol-gel system // J. Alloys Compd. 2017. V. 729. P. 607–616.https://doi.org/10.1016/j.jallcom.2017.09.222
  24. Shoghi A., Shakeri A., Abdizadeh H. et al. Synthesis of crack-free PZT thin films by sol-gel processing on glass substrate // Procedia Mater. Sci. 2015. V. 11. P. 386–390. https://doi.org/10.1016/j.mspro.2015.11.136
  25. Fè L., Norga G.J., Wouters D.J. et al. Chemical structure evolution and orientation selection in sol-gel-prepared ferroelectric Pb(Zr ,Ti)O 3 thin films // J. Mater. Res. 2001. V. 16. № 9. P. 2499–2504. https://doi.org/10.1557/JMR.2001.0342
  26. Alkoy E.M., Alkoy S., Shiosaki T. The effect of crystallographic orientation and solution aging on the electrical properties of sol–gel derived Pb(Zr 0.45 Ti 0.55 )O 3 thin films // Ceram. Int. 2007. V. 33. № 8. P. 1455–1462. https://doi.org/10.1016/j.ceramint.2006.06.010
  27. Moriyama M., Totsu K., Tanaka S. Sol–gel deposition and characterization of lead zirconate titanate thin film using different commercial sols // Sens. Mater. 2019. V. 31. № 8. P. 2497–2509. https://doi.org/10.18494/SAM.2019.2420
  28. Kweon S.H., Kanayama Y., Tan G. et al. In-situ study on piezoelectric responses of sol-gel derived epitaxial Pb[Zr ,Ti]O 3 thin films on Si substrate // J. Eur. Ceram. Soc. 2024. V. 44. № 6. P. 3887–3894. https://doi.org/10.1016/j.jeurceramsoc.2024.01.026
  29. Ti J., Li J., Fan Q. et al. Sm-doped PZT thin film with high piezoelectric properties by sol-gel method // J. Appl. Phys. 2024. V. 136. P. 055302. https://doi.org/10.1063/5.0221620
  30. Cui Y., Yu H., Abbas Z. et al. PZT composite film preparation and characterization using a method of sol-gel and electrohydrodynamic jet printing // Micromachines. 2023. V. 14. P. 918. https://doi.org/10.3390/mi14050918
  31. Li H., Hu Y., Wei S. et al. Oxygen plasma-assisted ultra-low temperature sol-gel-preparation of the PZT thin films // Ceram. Int. 2023. V. 49. № 7. P. 10864–10870.https://doi.org/10.1016/j.ceramint.2022.11.279
  32. Wu A., Vilarinho P.M. Nanostructure analysis of sol-gel PZT thin films derived from different chemical routes // Microsc. Microanal. 2009. V. 15. № S3. P. 53–54. https://doi.org/10.1017/S1431927609990729
  33. Parui J.R.M., Jose J., Parwin S. et al. Towards optimizing surface coverage for PVP-assisted PZT ferroelectric thick film // Integr. Ferroelectr. 2023. V. 237. № 1. P. 107–124. https://doi.org/10.1080/10584587.2023.2227057
  34. Atanova A.V., Zhigalina O.M., Khmelenin D.N. et al. Microstructure analysis of porous lead zirconate–titanate films // J. Am. Ceram. Soc. 2022. V. 105. № 1. P. 639–652. https://doi.org/10.1111/jace.18064
  35. Wang J., Gao Q., He H. et al. Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol-gel based electrospinning // J. Alloys Compd. 2013. V. 579. P. 617–621. https://doi.org/10.1016/j.jallcom.2013.07.099
  36. Yun J.S., Park C.K., Cho J.H. et al. The effect of PVP contents on the fiber morphology and piezoelectric characteristics of PZT nanofibers prepared by electrospinning // Mater. Lett. 2014. V. 137. P. 178–181. https://doi.org/10.1016/j.matlet.2014.08.139
  37. Chen X., Chen R., Chen Z. et al. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications // Ceram. Int. 2016. V. 42. № 16. P. 18554–18559. https://doi.org/10.1016/j.ceramint.2016.08.195
  38. Fan M., Hui W., Li Z. et al. Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr 0.3 ,Ti 0.7 )O 3 nanofibers // Microelectron. Eng. 2012. V. 98. P. 371–373. https://doi.org/10.1016/j.mee.2012.07.026
  39. Khajelakzay M., Taheri-Nassaj E. Synthesis and characterization of Pb(Zr 0.52 ,Ti 0.48 )O 3 nanofibers by electrospinning, and dielectric properties of PZT-resin composite // Mater. Lett. 2012. V. 75. P. 61–64. https://doi.org/10.1016/j.matlet.2012.01.082
  40. Zhang M., Salvado I.M.M., Vilarinho P.M. Synthesis and characterization of lead zirconate titanate fibers prepared by the sol-gel method: The role of the acid // J. Am. Ceram. Soc. 2003. V. 86. № 5. P. 775–781. https://doi.org/10.1111/j.1151-2916.2003.tb03374.x
  41. Mai M., Lin C., Xiong Z. et al. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route // J. Phys. Conf. Ser. 2009. V. 152. P. 012077. https://doi.org/10.1088/1742-6596/152/1/012077
  42. Mensur Alkoy E., Dagdeviren C., Papila M. Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite // J. Am. Ceram. Soc. 2009. V. 92. № 11. P. 2566–2570. https://doi.org/10.1111/j.1551-2916.2009.03261.x
  43. van der Veer E., Noheda B., Acuautla M. Piezoelectric properties of PZT by an ethylene glycol-based chemical solution synthesis // J. Solgel Sci. Technol. 2021. V. 100. P. 517–525. https://doi.org/10.1007/s10971-021-05651-6
  44. Lobmann P., Lange U., Glaubitt W. et al. Powders, fibers, thin films and aerogels: Sol-gel-derived piezoelectric materials // Key Eng. Mater. 2002. V. 224–226. P. 613–618. https://doi.org/10.4028/www.scientific.net/kem.224-226.613
  45. Bi K., Han S., Chen J. et al. Interfacial polarization control engineering and ferroelectric PZT/graphene heterostructure integrated application // Nanomaterials. 2024. V. 14. № 5. P. 432. https://doi.org/10.3390/nano14050432
  46. Sangsubun C., Watcharapasorn A., Naksata M., et al. Preparation of sol-bonded lead zirconate titanate ceramics via sol-gel and mixed-oxide Methods // Ferroelectrics. 2007. V. 356. P. 197–202. https://doi.org/10.1080/00150190701512318
  47. Максимов А.И., Мошников В.А., Таиров Ю.М., Шилова О.А. Основы золь-гель-технологии нанокомпозитов СПб: ООО «Техномедиа // Изд-во Элмор». 2008.
  48. Zhang Q., Huang Z., Whatmore R.W. Studies of lead zirconate titanate sol ageing part I: Factors affecting particle growth // J. Solgel Sci. Technol. 2002. V. 23. № 2. P. 135–144. https://doi.org/10.1023/A:1013799417981
  49. Suárez-Gómez A., Saniger-Blesa J.M., Calderón-Piñar F. The effects of aging and concentration on some interesting sol-gel parameters: A feasibility study for PZT nanoparticles insertion on in-house prepared PAA matrices via electrophoresis // J. Electroceramics. 2007. V. 22. № 1–3. P. 136–144. https://doi.org/10.1007/s10832-007-9367-0
  50. Mu G., Yang S., Li J., Gu M. Synthesis of PZT nanocrystalline powder by a modified sol–gel process using water as primary solvent source // J. Mater. Process. Technol. 2007. V. 182. № 1–3. P. 382–386. https://doi.org/10.1016/j.jmatprotec.2006.08.017
  51. Sanchez C., Livage J., Henry M. Chemical modification of alkoxide precursors // J. Non Cryst. Solids. 1988. V. 100. № 1–3. P. 65–76. https://doi.org/10.1016/0022-3093(88)90007-5
  52. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides // Prog. Solid. State Ch. 1988. V. 18. № 4. P. 259–341. https://doi.org/10.1016/0079-6786(88)90005-2
  53. Huang Z., Zhang Q., Whatmore R.W. Studies of lead zirconate titanate sol aging part II: Particle growth mechanisms and kinetics // J. Solgel Sci. Technol. 2002. V. 24. № 1. P. 49–55. https://doi.org/10.1023/A:1015161532663
  54. Huang Z., Zhang Q., Whatmore R.W. Kinetics of lead zirconate titanate sol aging // Integr. Ferroelectr. 2001. V. 36. № 1–4. P. 153–161. https://doi.org/10.1080/10584580108015537
  55. Головнин В.А., Каплунов И.А., Малышкина О.В., Педько Б.Б., Мовчикова А.А. Физические основы, методы исследования и практическое применение пьезоматериалов. –М.: ТЕХНОСФЕРА. 2017.
  56. Sharma P.K., Ounaies Z., Varadan V.V., Varadan V.K. Dielectric and piezoelectric properties of microwave sintered PZT // Smart Mater. Struct. 2001. V. 10. P. 878–883. https://doi.org/10.1088/0964-1726/10/5/304
  57. Paramonova N.D., Danilov E.A., Mikheev D.A., Golovchenko M.I. Piezoelectric film composite based on polyvinylidene fluoride (PVDF) and lead zirconate-titanate (PZT) piezoceramic: rational choice of particle size // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2022. Т. 78. № 4. С. 152–156.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Принципиальная схема золь–гель синтеза геля-прекурсора ЦТС.

Скачать (144KB)
3. Рис. 2. Время образования плотного геля-прекурсора ЦТС при различных значениях Н. Дисперсионная среда и осаждающий агент: МЭ + H2Oдист (а), УК + ЭГ (б).

Скачать (117KB)
4. Рис. 3. Изменение оптической плотности при длине волны 550 нм в процессе гелеобразования золя-прекурсора ЦТС, полученного золь–гель методом на основе различных дисперсионных сред и осаждающих агентов: МЭ + H2Oдист (а), УК + ЭГ (б). Значения Н приведены в поле рисунков.

Скачать (221KB)
5. Рис. 4. Предполагаемая принципиальная схема образования геля.

Скачать (205KB)
6. Рис. 5. Внешний вид гелей: МЭ + H2Oдист (а). Слева направо: Н = 228, 193, 163, 131, 121, 111, 98; УК + ЭГ (б). Слева направо: Н = 79, 60, 39, 16, 8.

7. Рис. 6. Зависимость оптической плотности перехода золь–гель от величины H: золь на основе МЭ + H2Oдист (а), (оптическое поглощение золя на 5-й минуте формирования геля), золь на основе УК+ЭГ (б) (оптическое поглощение золя на 25-й минуте формирования геля).

Скачать (125KB)
8. Рис. 7. Изменение средних размеров частиц в процессе гелеобразования золя-прекурсора ЦТС, полученного золь–гель методом на основе различных дисперсионных сред и осаждающих агентов: МЭ + H2Oдист (а), УК + ЭГ (б). Значения Н приведены в поле рисунков.

Скачать (184KB)
9. Рис. 8. Изменение динамической вязкости в процессе гелеобразования золя-прекурсора ЦТС, полученного золь-гель методом на основе различных дисперсионных сред и осаждающих агентов: МЭ + H2Oдист (а), УК + ЭГ (б). Значения Н приведены в поле рисунков.

Скачать (207KB)

© Российская академия наук, 2024