Influence of dispersion medium and precipitating agent on sol and gel formation of lead zirconate-titanate ceramic precursor

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the present paper, we report data on the influence of choice of dispersion medium-precipitating agent pair on sol-gel process for lead zirconate-titanate ceramic precursor manufacturing. Acetic acid and 2-methoxyethanol were studied as dispersion media, whereas ethylene glycol and water – as respective precipitating agents. Changes in optical, rheological properties and particle size distributions during the sol-gel transition were studied at different concentrations of precipitating agents. It was shown that the nature and relative concentration of dispersion medium and precipitating agent provide wide-range control of lead zirconate-titanate sol and gel properties as well as the rate of sol-gel process, mechanism of formation and structure of the gels.

全文:

受限制的访问

作者简介

N. Paramonova

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

Email: danilovegor1@gmail.com
俄罗斯联邦, ул. Электродная, 2, Москва, 111524

E. Danilov

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

编辑信件的主要联系方式.
Email: danilovegor1@gmail.com
俄罗斯联邦, ул. Электродная, 2, Москва, 111524

E. Ivanova

Акционерное общество «Научно-исследовательский институт конструкционных материалов на основе графита «НИИграфит»

Email: danilovegor1@gmail.com
俄罗斯联邦, ул. Электродная, 2, Москва, 111524

参考

  1. Xu Z.J., Chu, R.Q., Li G.R. et al. Preparation of PZT powders and ceramics via a hybrid method of sol–gel and ultrasonic atomization // Mater. Sci. Eng. B. 2005. V. 117. № 2. P. 113–118. https://doi.org/10.1016/j.mseb.2004.10.019
  2. Huang C., Chen B., Wu L. Application feasibility of Pb(Zr ,Ti)O 3 ceramics fabricated from sol–gel derived powders using titanium and zirconium alkoxides // Mater. Res. Bull. 2004. V. 39. № 4–5. P. 523–532. https://doi.org/10.1016/j.materresbull.2004.01.002
  3. De-Qing Z., Shao-Jun W., Hong-Shan S. et al. Synthesis and mechanism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders // J. Solgel Sci. Technol. 2007. V. 41. № 2. P. 157–161. https://doi.org/10.1007/s10971-006-0521-y
  4. Bel Hadj Tahar R., Bel Hadj Tahar N., Ben Salah A. Low-temperature processing and characterization of single-phase PZT powders by sol-gel method // J. Mater. Sci. 2007. V. 42. № 23. P. 9801–9806. http://doi.org/10.1007/s10853-007-1966-2
  5. Bel-Hadj-Tahar R., Abboud M., Bouzitoun M. Thermal analysis of the crystallization kinetics of lead zirconate titanate powders prepared via sol-gel route // J. Therm. Anal. Calorim. 2020. V. 144. № 1. P. 127–138.http://doi.org/10.1007/s10973-020-09439-8
  6. Bel-Hadj-Tahar R., Abboud M., Shkir M. et al. Novel sol-gel synthesis of spherical lead titanate submicrometer powders // Crystals. 2021. V. 11. № 5. P. 484. https://doi.org/10.3390/cryst11050484
  7. Eid E.A., Ebied M. R., Kaid M.A. et al. Synthesis and microstructure characterization of sol-gel derived phase fractions in PZT nanopowders // Dig. J. Nanomater. Biostructures. 2020. V. 15. № 2. P. 465–470. https://doi.org/10.15251/djnb.2020.152.465
  8. Sachdeva A., Arora M., Tandon, R.P. Synthesis and characterization of sol–gel derived PZT nano powder // J. Nanosci. Nanotechnol. 2009. V. 9. № 11. P. 6631–6636. http://doi.org/10.1166/jnn.2009.1314
  9. Lee H.T., Wan I.L., Yoo H.K., Chin M.W. The seeding effects on the phase transformation of sol-gel derived PZT powder // Bull. Korean Chem. Soc. 2002. V. 23. P. 1078–1084. https://doi.org/10.5012/BKCS.2002.23.8.1078
  10. Парамонова Н.Д., Вартанян М.А., Данилов Е.А. Применение золь-гель метода для получения наноструктурированных пьезоматериалов системы цирконат-титанат свинца. Часть 1. Синтез порошков // Стекло и керамика. 2024. Т. 97. № 2 (1154). С. 47–56. https://doi.org/10.14489/glc.2024.02.pp.047-056
  11. Khan S.U., Mateen A., Qazi I. Sol–gel derived lead zirconate titanate: Processing, micrometer and nanometer scale patterning and characterization // Ceram. Int. 2016. V. 42. № 1. P. 185–193. https://doi.org/
  12. Hassen A., El Sayed A.M., Al-Ghamdi A., Shaban M. Synthesis of some functional oxides and their composites using sol-gel method. In: Sol-gel method: Resent advances. IntechOpen. 2023. http://doi.org/10.5772/intechopen.111384
  13. Парамонова Н.Д., Вартанян М.А., Данилов Е.А. Применение золь-гель метода для получения наноструктурированных пьезоматериалов системы цирконат-титанат свинца. Часть 2. Синтез пленочных и стержневидных структур // Стекло и керамика. 2024. Т. 97. № 6 (1158). С. 49–59. https://doi.org/10.14489/glc.2024.06.pp.049-059
  14. Wang Z., Zhu W., Zhao C., et al. Dense PZT thick films derived from sol-gel based nanocomposite process // Mater. Sci. Eng. B. 2003. V. 99. № 1–3. P. 56–62. https://doi.org/10.1016/S0921-5107(02)00568-8
  15. Wang Z., Miao J., Zhu W. Piezoelectric thick films and their application in MEMS // J. Eur. Ceram. Soc. 2007. V. 27. № 13–15. P. 3759–3764. https://doi.org/10.1016/j.jeurceramsoc.2007.02.067
  16. Wu A., Miranda Salvado I.M., Vilarinho P.M. et al. Processing and seeding effects on crystallisation of PZT thin films from sol-gel method // J. Eur. Ceram. Soc. 1997. V. 17. № 12. P. 1443–1452. https://doi.org/10.1016/S0955-2219(97)00027-7
  17. Belleville P., Bigarre J., Boy P., et al. Stable PZT sol for preparing reproducible high-permittivity perovskite-based thin films // J. Solgel Sci. Technol. 2007. V. 43. № 2. P. 213–221. https://doi.org/10.1007/s10971-007-1580-4
  18. Tsai C.-C., Chu S.-Y., Hong C.-S. et al. Effects of annealing temperature and pressure of vacuum infiltration on the electrical properties of Pb(Zr 0.52 Ti 0.48 )O 3 thick films prepared via a modified sol-gel method // Thin Solid Films. 2020. V. 706. P. 138071. https://doi.org/10.1016/j.tsf.2020.138071
  19. Zhang Y.-J., Wang Z.J., Bai Y. et al. Enhanced electrical properties of epitaxial PZT films deposited by sol-gel method and crystallized by microwave irradiation // J. Alloys Compd. 2018. V. 757. P. 24–30.https://doi.org/10.1016/j.jallcom.2018.05.047
  20. Yu S., Yao K., Shannigrahi S. et al. Effects of poly(ethyleneglycol) additive molecular weight on the microstructure and properties of sol-gel-derived lead zirconate titanate thin films // J. Mater. Res. 2003. V. 18. № 3. P. 737–741. http://doi.org/10.1557/JMR.2003.0100
  21. Hsu Y.-C. 1–10 μm PZT films grown by modified sol-gel method // Sens. Mater. 2006. V.18. № 6. P. 313–327.
  22. Bel-Hadj-Tahar R., Abboud M., Belhadj Tahar N. Microstructural and electrical properties of nanostructured lead zirconate titanate composite thick films processed for MEMS applications via hybrid sol–gel approach // J. Alloys Compd. 2020. V. 830. P. 154695. https://doi.org/10.1016/j.jallcom.2020.154695
  23. Bel-Hadj-Tahar R. Morphological and electrical investigations of lead zirconium titanate thin films processed at low temperature by a novel sol-gel system // J. Alloys Compd. 2017. V. 729. P. 607–616.https://doi.org/10.1016/j.jallcom.2017.09.222
  24. Shoghi A., Shakeri A., Abdizadeh H. et al. Synthesis of crack-free PZT thin films by sol-gel processing on glass substrate // Procedia Mater. Sci. 2015. V. 11. P. 386–390. https://doi.org/10.1016/j.mspro.2015.11.136
  25. Fè L., Norga G.J., Wouters D.J. et al. Chemical structure evolution and orientation selection in sol-gel-prepared ferroelectric Pb(Zr ,Ti)O 3 thin films // J. Mater. Res. 2001. V. 16. № 9. P. 2499–2504. https://doi.org/10.1557/JMR.2001.0342
  26. Alkoy E.M., Alkoy S., Shiosaki T. The effect of crystallographic orientation and solution aging on the electrical properties of sol–gel derived Pb(Zr 0.45 Ti 0.55 )O 3 thin films // Ceram. Int. 2007. V. 33. № 8. P. 1455–1462. https://doi.org/10.1016/j.ceramint.2006.06.010
  27. Moriyama M., Totsu K., Tanaka S. Sol–gel deposition and characterization of lead zirconate titanate thin film using different commercial sols // Sens. Mater. 2019. V. 31. № 8. P. 2497–2509. https://doi.org/10.18494/SAM.2019.2420
  28. Kweon S.H., Kanayama Y., Tan G. et al. In-situ study on piezoelectric responses of sol-gel derived epitaxial Pb[Zr ,Ti]O 3 thin films on Si substrate // J. Eur. Ceram. Soc. 2024. V. 44. № 6. P. 3887–3894. https://doi.org/10.1016/j.jeurceramsoc.2024.01.026
  29. Ti J., Li J., Fan Q. et al. Sm-doped PZT thin film with high piezoelectric properties by sol-gel method // J. Appl. Phys. 2024. V. 136. P. 055302. https://doi.org/10.1063/5.0221620
  30. Cui Y., Yu H., Abbas Z. et al. PZT composite film preparation and characterization using a method of sol-gel and electrohydrodynamic jet printing // Micromachines. 2023. V. 14. P. 918. https://doi.org/10.3390/mi14050918
  31. Li H., Hu Y., Wei S. et al. Oxygen plasma-assisted ultra-low temperature sol-gel-preparation of the PZT thin films // Ceram. Int. 2023. V. 49. № 7. P. 10864–10870.https://doi.org/10.1016/j.ceramint.2022.11.279
  32. Wu A., Vilarinho P.M. Nanostructure analysis of sol-gel PZT thin films derived from different chemical routes // Microsc. Microanal. 2009. V. 15. № S3. P. 53–54. https://doi.org/10.1017/S1431927609990729
  33. Parui J.R.M., Jose J., Parwin S. et al. Towards optimizing surface coverage for PVP-assisted PZT ferroelectric thick film // Integr. Ferroelectr. 2023. V. 237. № 1. P. 107–124. https://doi.org/10.1080/10584587.2023.2227057
  34. Atanova A.V., Zhigalina O.M., Khmelenin D.N. et al. Microstructure analysis of porous lead zirconate–titanate films // J. Am. Ceram. Soc. 2022. V. 105. № 1. P. 639–652. https://doi.org/10.1111/jace.18064
  35. Wang J., Gao Q., He H. et al. Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol-gel based electrospinning // J. Alloys Compd. 2013. V. 579. P. 617–621. https://doi.org/10.1016/j.jallcom.2013.07.099
  36. Yun J.S., Park C.K., Cho J.H. et al. The effect of PVP contents on the fiber morphology and piezoelectric characteristics of PZT nanofibers prepared by electrospinning // Mater. Lett. 2014. V. 137. P. 178–181. https://doi.org/10.1016/j.matlet.2014.08.139
  37. Chen X., Chen R., Chen Z. et al. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications // Ceram. Int. 2016. V. 42. № 16. P. 18554–18559. https://doi.org/10.1016/j.ceramint.2016.08.195
  38. Fan M., Hui W., Li Z. et al. Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr 0.3 ,Ti 0.7 )O 3 nanofibers // Microelectron. Eng. 2012. V. 98. P. 371–373. https://doi.org/10.1016/j.mee.2012.07.026
  39. Khajelakzay M., Taheri-Nassaj E. Synthesis and characterization of Pb(Zr 0.52 ,Ti 0.48 )O 3 nanofibers by electrospinning, and dielectric properties of PZT-resin composite // Mater. Lett. 2012. V. 75. P. 61–64. https://doi.org/10.1016/j.matlet.2012.01.082
  40. Zhang M., Salvado I.M.M., Vilarinho P.M. Synthesis and characterization of lead zirconate titanate fibers prepared by the sol-gel method: The role of the acid // J. Am. Ceram. Soc. 2003. V. 86. № 5. P. 775–781. https://doi.org/10.1111/j.1151-2916.2003.tb03374.x
  41. Mai M., Lin C., Xiong Z. et al. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route // J. Phys. Conf. Ser. 2009. V. 152. P. 012077. https://doi.org/10.1088/1742-6596/152/1/012077
  42. Mensur Alkoy E., Dagdeviren C., Papila M. Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite // J. Am. Ceram. Soc. 2009. V. 92. № 11. P. 2566–2570. https://doi.org/10.1111/j.1551-2916.2009.03261.x
  43. van der Veer E., Noheda B., Acuautla M. Piezoelectric properties of PZT by an ethylene glycol-based chemical solution synthesis // J. Solgel Sci. Technol. 2021. V. 100. P. 517–525. https://doi.org/10.1007/s10971-021-05651-6
  44. Lobmann P., Lange U., Glaubitt W. et al. Powders, fibers, thin films and aerogels: Sol-gel-derived piezoelectric materials // Key Eng. Mater. 2002. V. 224–226. P. 613–618. https://doi.org/10.4028/www.scientific.net/kem.224-226.613
  45. Bi K., Han S., Chen J. et al. Interfacial polarization control engineering and ferroelectric PZT/graphene heterostructure integrated application // Nanomaterials. 2024. V. 14. № 5. P. 432. https://doi.org/10.3390/nano14050432
  46. Sangsubun C., Watcharapasorn A., Naksata M., et al. Preparation of sol-bonded lead zirconate titanate ceramics via sol-gel and mixed-oxide Methods // Ferroelectrics. 2007. V. 356. P. 197–202. https://doi.org/10.1080/00150190701512318
  47. Максимов А.И., Мошников В.А., Таиров Ю.М., Шилова О.А. Основы золь-гель-технологии нанокомпозитов СПб: ООО «Техномедиа // Изд-во Элмор». 2008.
  48. Zhang Q., Huang Z., Whatmore R.W. Studies of lead zirconate titanate sol ageing part I: Factors affecting particle growth // J. Solgel Sci. Technol. 2002. V. 23. № 2. P. 135–144. https://doi.org/10.1023/A:1013799417981
  49. Suárez-Gómez A., Saniger-Blesa J.M., Calderón-Piñar F. The effects of aging and concentration on some interesting sol-gel parameters: A feasibility study for PZT nanoparticles insertion on in-house prepared PAA matrices via electrophoresis // J. Electroceramics. 2007. V. 22. № 1–3. P. 136–144. https://doi.org/10.1007/s10832-007-9367-0
  50. Mu G., Yang S., Li J., Gu M. Synthesis of PZT nanocrystalline powder by a modified sol–gel process using water as primary solvent source // J. Mater. Process. Technol. 2007. V. 182. № 1–3. P. 382–386. https://doi.org/10.1016/j.jmatprotec.2006.08.017
  51. Sanchez C., Livage J., Henry M. Chemical modification of alkoxide precursors // J. Non Cryst. Solids. 1988. V. 100. № 1–3. P. 65–76. https://doi.org/10.1016/0022-3093(88)90007-5
  52. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides // Prog. Solid. State Ch. 1988. V. 18. № 4. P. 259–341. https://doi.org/10.1016/0079-6786(88)90005-2
  53. Huang Z., Zhang Q., Whatmore R.W. Studies of lead zirconate titanate sol aging part II: Particle growth mechanisms and kinetics // J. Solgel Sci. Technol. 2002. V. 24. № 1. P. 49–55. https://doi.org/10.1023/A:1015161532663
  54. Huang Z., Zhang Q., Whatmore R.W. Kinetics of lead zirconate titanate sol aging // Integr. Ferroelectr. 2001. V. 36. № 1–4. P. 153–161. https://doi.org/10.1080/10584580108015537
  55. Головнин В.А., Каплунов И.А., Малышкина О.В., Педько Б.Б., Мовчикова А.А. Физические основы, методы исследования и практическое применение пьезоматериалов. –М.: ТЕХНОСФЕРА. 2017.
  56. Sharma P.K., Ounaies Z., Varadan V.V., Varadan V.K. Dielectric and piezoelectric properties of microwave sintered PZT // Smart Mater. Struct. 2001. V. 10. P. 878–883. https://doi.org/10.1088/0964-1726/10/5/304
  57. Paramonova N.D., Danilov E.A., Mikheev D.A., Golovchenko M.I. Piezoelectric film composite based on polyvinylidene fluoride (PVDF) and lead zirconate-titanate (PZT) piezoceramic: rational choice of particle size // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2022. Т. 78. № 4. С. 152–156.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the sol–gel synthesis of the PZT gel precursor.

下载 (144KB)
3. Fig. 2. Time of formation of a dense gel-precursor of CTS at different values ​​of H. Dispersion medium and precipitating agent: ME + H2Odist (a), UK + EG (b).

下载 (117KB)
4. Fig. 3. Change in optical density at a wavelength of 550 nm during the gelation process of the PZT precursor sol obtained by the sol–gel method based on various dispersion media and precipitating agents: ME + H2Odist (a), UK + EG (b). The H values ​​are given in the field of the figures.

下载 (221KB)
5. Fig. 4. Proposed schematic diagram of gel formation.

下载 (205KB)
6. Fig. 5. Appearance of gels: ME + H2Odist (a). From left to right: H = 228, 193, 163, 131, 121, 111, 98; UK + EG (b). From left to right: H = 79, 60, 39, 16, 8.

下载 (1MB)
7. Fig. 6. Dependence of the optical density of the sol–gel transition on the value of H: sol based on ME + H2Odist (a), (optical absorption of the sol at the 5th minute of gel formation), sol based on UK + EG (b) (optical absorption of the sol at the 25th minute of gel formation).

下载 (125KB)
8. Fig. 7. Change in average particle sizes during the gelation process of the PZT precursor sol obtained by the sol–gel method based on different dispersion media and precipitating agents: ME + H2Odist (a), UK + EG (b). The H values ​​are given in the field of the figures.

下载 (184KB)
9. Fig. 8. Change in dynamic viscosity during the gelation process of the sol-precursor of PZT obtained by the sol-gel method based on various dispersion media and precipitating agents: ME + H2Odist (a), UK + EG (b). The values ​​of H are given in the field of the figures.

下载 (207KB)

版权所有 © Russian Academy of Sciences, 2024