Hydrophobic drugs solubilization in associates of cationic glycerolipids and creation of mesoporous particle-containers on these bifunctional templates
- Authors: Dement’eva O.V.1, Shishmakova Е.М.1, Ivchenko A.V.1, Staltsov M.S.2, Markova А.А.3, Rudoy V.M.1
-
Affiliations:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Национальный исследовательский ядерный университет «МИФИ»
- Институт биохимической физики им. Н.М. Эмануэля РАН
- Issue: Vol 86, No 6 (2024)
- Pages: 709-719
- Section: Articles
- Submitted: 29.05.2025
- Published: 15.12.2024
- URL: https://cijournal.ru/0023-2912/article/view/681007
- DOI: https://doi.org/10.31857/S0023291224060045
- EDN: https://elibrary.ru/VLNQNQ
- ID: 681007
Cite item
Abstract
The possibility of using associates of cationic glycerolipid (CGL) rac-N-{4-[(2-ethoxy-3-octadecyloxyprop-1-yl)oxycarbonyl]butyl}-N’-methylimidazolium iodide, which has a pronounced antitumor effect, for the solubilization of two hydrophobic biologically active compounds (curcumin and capsaicin) and as a template for the sol–gel synthesis of mesoporous silica nanocontainers (MSNs). The thermodynamic characteristics of solubilization are determined, and it is shown that this process contributes to a significant increase in the solubility of both hydrophobic drugs in water. Hydrolytic condensation of tetraethoxysilane in the presence of CGL associates containing curcumin or capsaicin leads to the production of MSNs characterized by a narrow size distribution and a high content of encapsulated drugs. This combination of the stages of synthesis and loading of MSNs is of undoubted interest in relation to the nanoencapsulation of cationic glycerolipids (including in combination with other drugs).
Full Text

About the authors
O. V. Dement’eva
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Author for correspondence.
Email: dema_ol@mail.ru
Russian Federation, Ленинский пр., 31, Москва, 119071
Е. М. Shishmakova
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: dema_ol@mail.ru
Russian Federation, Ленинский пр., 31, Москва, 119071
A. V. Ivchenko
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: dema_ol@mail.ru
Russian Federation, Ленинский пр., 31, Москва, 119071
M. S. Staltsov
Национальный исследовательский ядерный университет «МИФИ»
Email: dema_ol@mail.ru
Russian Federation, Каширское ш., 31, Москва, 115409
А. А. Markova
Институт биохимической физики им. Н.М. Эмануэля РАН
Email: dema_ol@mail.ru
Russian Federation, ул. Косыгина, 4, Москва, 119334
V. M. Rudoy
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: dema_ol@mail.ru
Russian Federation, Ленинский пр., 31, Москва, 119071
References
- Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms // Cell. 2011. V. 147. P. 275−292. https://doi.org/10.1016/j.cell.2011.09.024
- Veiseh O., Kievit F.M., Ellenbogen R.G., Zhang M. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine // Adv. Drug Delivery Rev. 2011. V. 63. P. 582−596. https://doi.org/10.1016/j.addr.2011.01.010
- Fan W., Yung B., Huang P., Chen X. Nanotechnology for multimodal synergistic cancer therapy // Chem. Rev. 2017. V. 117. P. 13566−13638. https://doi.org/10.1021/acs.chemrev.7b00258
- Piccolo M.T., Menale C., Crispi S. Combined anticancer therapies: an overview of the latest applications // Anti-Cancer Agents Med. Chem. 2015. V. 15. P. 408−422. https://doi.org/10.2174/1871520615666150113123039
- Tsouris V., Joo M.K., Kim S.H., Kwon I.C., Won Y.-Y. Nanocarriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers // Biotechnol. Adv. 2014. V. 32. P. 1037−1050. https://doi.org/10.1016/j.biotechadv.2014.05.006
- Feng Y., Liao Z., Li M., Zhang H., Li T., Qin X., Li S., Wu C., You F., Liao X., Cai L., Yang H., Liu Y. Mesoporous silica nanoparticles-based nanoplatforms: Basic construction, current state, and emerging applications in anticancer therapeutics // Adv. Healthcare Mater. 2023. V. 12. P. 2201884. https://doi.org/10.1002/adhm.202201884
- He Q.J., Gao Y., Zhang L.X., Bu W.B., Chen H.R., Li Y.P., Shi J.L. One-pot self-assembly of mesoporous silica nanoparticle-based pH-responsive anti-cancer nano drug delivery system // J. Mater. Chem. 2011. V. 21. P. 15190–15192. https://doi.org/10.1039/C1JM13598H
- Ефимова А.А., Сыбачин А.В. Стимул-чувствительные системы для доставки лекарств на основе бислойных липидных везикул: новые тенденции // Коллоид. журн. 2023. Т. 85. С. 566–582. https://doi.org/10.31857/S0023291223600608
- Tian W.-D., Ma Y.-Q. Theoretical and computational studies of dendrimers as delivery vectors // Chem. Soc. Rev. 2013. V. 42. P. 705−727. https://doi.org/10.1039/C2CS35306G
- Trushina D.B., Akasov R.A., Khovankina A.V., Borodina T.N., Bukreeva T.V., Markvicheva E.A. Doxorubicin-loaded biodegradable capsules: Temperature induced shrinking and study of cytotoxicity in vitro // J. Mol. Liq. 2019. V. 284. P. 215–224. https://doi.org/10.1016/j.molliq.2019.03.152
- Мищенко Е.В., Гилёва А.М., Марквичева Е.А., Королева М.Ю. Наноэмульсии и твердые липидные наночастицы с инкапсулированным доксорубицином и тимохиноном // Коллоид. журн. 2023. T. 85. C. 619–628. https://doi.org/10.31857/S002329122360058X
- Sere S., De Roo B., Vervaele M., Gool S.V., Jacobs S., Seo J.W., Locquet J.-P. Altering the biodegradation of mesoporous silica nanoparticles by means of experimental parameters and surface functionalization // J. Nanomater. 2018. P. 7390618. https://doi.org/10.1155/2018/7390618
- Дементьева О.В. / Мезопористые частицы-контейнеры из кремнезема: новые подходы и новые возможности // Коллоид. журн. 2020. Т. 82. С. 523–547. https://doi.org/10.31857/S0023291220050031
- Pal N., Lee J.-H., Cho E.-B. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles // Nanomaterials. 2020. V. 10. P. 2122. https://doi.org/10.3390/nano10112122
- Chen Y., Chu C., Zhou Y., Ru Y., Chen H., Chen F., He Q., Zhang Y., Zhang L., Shi J. Reversible pore-structure evolution in hollow silica nanocapsules: Large pores for siRNA delivery and nanoparticle collecting // Small. 2011. V. 7. P. 2935−2944. https://doi.org/10.1002/smll.201101055
- Lei Q., Guo J., Noureddine A., Wang A., Wuttke S., Brinker C.J., Zhu W. Sol–gel-based advanced porous silica materials for biomedical applications // Adv. Funct. Mater. 2020. V. 30. P. 1909539. https://doi.org/10.1002/adfm.201909539
- Lerida-Viso A., Estepa-Fernandez A., García-Fernandez A., Martí-Centelles V., Martínez-Manez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation // Adv. Drug Delivery Rev. 2023. V. 201. P. 115049. https://doi.org/10.1016/j.addr.2023.115049
- He Y., Zhang Y., Sun M., Yang C., Zheng X., Shi C., Chang Z., Wang Z., Chen J., Pei S., Dong W., Shao D., She J. One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics // Colloids Surf. B. 2020. V. 187. P. 110653. https://doi.org/10.1016/j.colsurfb.2019.110653
- Brezhnev A., Tang F.-K., Kwan C.-S., Basabrain M.S., Tsoi J.K.H., Matinlinna J.P., Neelakantan P., Leung K.C.-F. One-pot preparation of cetylpyridinium chloride-containing nanoparticles for biofilm eradication // ACS Appl. Bio Mater. 2023. V. 6. P. 1221–1230. https://doi.org/10.1021/acsabm.2c01080
- Дементьева О.В., Семилетов А.М., Чиркунов А.А., Рудой В.М., Кузнецов Ю.И. Золь–гель синтез SiO2-контейнеров на темплате из мицелл анионного ингибитора коррозии и перспективы создания защитных покрытий на их основе // Коллоид. журн. 2018. Т. 80. С. 498–508. https://doi.org/10.1134/S0023291218050051
- Dement’eva O.V., Naumova K.A., Zhigletsova S.K., Klykova, M.V. Somov A.N., Dunaytsev I.A., Senchikhin I.N., Volkov V.V., Rudoy V.M. / Drug-templated mesoporous silica nanocontainers with extra high payload and controlled release rate // Colloids Surf., B. 2020. V. 185. P. 110577. https://doi.org/10.1016/j.colsurfb.2019.110577
- Naumova K.A., Dement’eva O.V., Senchikhin I.N., Rudoy V.M. Mesoporous silica particles based on complex micelles of poorly water-soluble compounds. One simple step to multidrug carriers // Micropor. Mesopor. Mater. 2021. V. 316. 110911. https://doi.org/10.1016/j.micromeso.2021.110911
- Дементьева О.В., Наумова К.А., Шишмакова Е.М., Сенчихин И.Н., Жиглецова С.К., Клыкова М.В., Дунайцев И.А., Козлов Д.А., Рудой В.М. Синтез бифункциональных частиц-контейнеров из кремнезема на мицеллах антисептика с солюбилизированным куркумином и оценка их биологической активности // Коллоид. журн. 2021. Т. 83. С. 623–633. https://doi.org/10.31857/S0023291221060021
- Shishmakova E.M., Ivchenko A.V., Bolshakova A.V., Staltsov M.S., Urodkova E.K., Grammatikova N.E., Rudoy V.M., Dement’eva O.V. Antibacterial bionanocomposites based on drug-templated bifunctional mesoporous silica nanocontainers // Pharmaceutics. 2023. V. 15. P. 2675. https://doi.org/10.3390/pharmaceutics15122675
- Маркова А.А., Плявник Н.В., Морозова Н.Г., Маслов М.А., Штиль А.А. Противоопухолевые фосфатсодержащие липиды и бесфосфорные алкильные катионные глицеролипиды: особенности химической структуры и перспективы разработки препаратов на их основе // Изв. Академии наук. Сер. хим. 2014. № 5. С. 1081–1087.
- Pattni B.S., Chupin V.V., Torchilin V.P. New developments in liposomal drug delivery // Chem. Rev. 2015. V. 115. P. 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046
- Salehi B., Stojanovic-Radic Z., Matejic J., Sharifi-Rad M., Kumar N.V.A., Martins N., Sharifi-Rad J. The therapeutic potential of curcumin: a review of clinical trials // Eur. J. Med. Chem. 2019. V. 163. P. 527–545. https://doi.org/10.1016/j.ejmech.2018.12.016
- Zhang Y., Liu K., Yan C., Yin Y., He S., Qiu L. Li G. Natural polyphenols for treatment of colorectal cancer // Molecules. 2022. V. 27. P. 8810. https://doi.org/10.3390/molecules27248810
- Маркова А.А., Плявник Н.В., Татарский В.В., Штиль А.А., Серебренникова Г.А. Новые алкильные катионные глицеролипиды с гетероциклическим полярным доменом вызывают нарушения клеточного цикла и гибель клеток лейкоза человека // Биоорг. химия. 2010. Т. 36. С. 574–576.
- Наумова К.А., Дементьева О.В., Зайцева А.В., Рудой В.М. Солюбилизация как способ создания гибридных мицеллярных темплатов для синтеза многофункциональных мезопористых частиц-контейнеров // Коллоид. журн. 2019. Т. 81. С. 478–486. https://doi.org/10.1134/S0023291219040098
- Маркова А.А., Плявник Н.В., Плетнева М.В., Серебренникова Г.А., Штиль А.А. Противоопухолевые бесфосфорные алкильные катионные глицеролипиды с гетероциклическими полярными доменами вызывают значительно меньший гемолиз, чем препарат-прототип эдельфозин // Клиническая онкогематология. 2012. Т. 5. № 2. С. 141–143.
- Дементьева О.В., Румянцева Т.Б., Рудой В.М. Первый пример синтеза кремнеземных нанооболочек на везикулах катионного глицеролипида кандидата в противоопухолевые препараты // Коллоид. журн. 2016. Т. 78. С. 265–268. https://doi.org/10.7868/S0023291216020038
- Dement’eva O.V., Shishmakova E.M., Ivchenko A.V., Staltsov M.S., Markova A.A., Rudoy V.M. Cationic glycerolipid as a templating agent for the synthesis of mesoporous silica nanoparticles // Mendeleev Commun. 2024. в печати.
- Задымова Н.М., Цикурина Н.Н., Потешнова М.В. Солюбилизация перфтордекалина в водных растворах додекаэтоксилированного нонилфенола // Коллоид. журн. 2003. Т. 65. С. 347–351.
- Manolova Y., Deneva V., Antonov L., Drakalska E., Momekova D., Lambov N. The effect of the water on the curcumin tautomerism: a quantitative approach // Spectrochim. Acta. A. 2014. V. 132. P. 815–820. https://doi.org/10.1016/j.saa.2014.05.096
- Zhao Q., Kong D.-X., Zhang H.-Y. Excited-state pKa values of curcumin // Nat. Prod. Commun. 2008. V. 3. P. 229–232. https://doi.org/10.1177/1934578X0800300225
- Gangabhagirathi R., Joshi R. Antioxidant activity of capsaicin on radiation-induced oxidation of murine hepatic mitochondrial membrane preparation // Res. Rep. Biochem. 2015. V. 5. P. 163–171. https://doi.org/10.2147/RRBC.S84270
- McLatchie L.M., Bevan S. The effects of pH on the interaction between capsaicin and the vanilloid receptor in rat dorsal root ganglia neurons // Br. J. Pharmacol. 2001. V. 132. P. 899–908. https://doi.org/10.1038/sj.bjp.0703900
- Pérez-González A., Prejanò M., Russo N., Marino T., Galano A. Capsaicin, a powerful •OH-inactivating ligand // Antioxidants. 2020. V. 9. P. 1247. https://doi.org/10.3390/antiox9121247
- Rangel-Yagui C.O., Hsu H.W.L., Pessoa-Jr A., Costa Tavares L. Micellar solubilization of ibuprofen – influence of surfactant head groups on the extent of solubilization // Braz. J. Pharm. Sci. 2005. V. 41. P. 237–246. https://doi.org/10.1590/S1516-93322005000200012
- Bhat P.A., Dar A.A., Rather G.M. Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin // J. Chem. Eng. Data. 2008. V. 53. P. 1271–1277. https://doi.org/10.1021/je700659g
- Дементьева О.В., Сенчихин И.Н., Седых Э.М., Громяк И.Н., Огарев В.А., Рудой В.М. Мезоструктурированные SiO2-наноконтейнеры, синтезированные на функциональном темплате: емкость и скорость разгрузки // Коллоид. журн. 2016. Т. 78. С. 35–48. https://doi.org/10.7868/S0023291216010055
Supplementary files
