Modification of the Extracellular Matrix of the Umbilical Cord Mesenchymal Stromal Cells during Long-Term Modeling of Microgravity Effects
- Authors: Gornostaeva A.N1, Romanov Y.A2,3, Buravkova L.B1
-
Affiliations:
- Institute of Biomedical Problems, Russian Academy of Sciences
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Ministry of Health of the Russian Federation
- CryoCenter Cord Blood Bank
- Issue: Vol 70, No 5 (2025)
- Pages: 923-932
- Section: Cell biophysics
- URL: https://cijournal.ru/0006-3029/article/view/695409
- DOI: https://doi.org/10.31857/S0006302925050086
- ID: 695409
Cite item
Abstract
It is known that microgravity leads to significant changes in the functioning of human physiological systems. In vitro, mechanosensitive cells also adapt to microgravity, demonstrating a rearrangement of cytoskeletal elements and functional activity. The effect of long-term microgravity simulated on a randomization position device (Gravite®) was studied on cultured multipotent mesenchymal stromal cells of umbilical cord tissue. After 21 days of exposure, the cells retained high viability and a characteristic stromal phenotype. The expression of CD90 and CD105 markers involved in cell-to-cell and cell-to-matrix adhesion increased on their surface. The cytokine profile changed, and the concentration of pleiotropic cytokines MCP-3, GM-CSF, and PDGF-AA, which potentiate metalloproteinase activity, increased. The expression of the genes encoding MMP1 and osteocalcin increased, and decreased in case of osteopontin. The main extracellular matrix proteins — fibronectin, collagen, and osteopontin — were visualized in both experimental groups, while collagen was more pronounced in microgravity. The described changes indicate adaptive changes in the local microenvironment and remodeling of the extracellular matrix in response to prolonged exposure to simulated microgravity while the functional activity of mesenchymal stromal cells is maintained.
About the authors
A. N Gornostaeva
Institute of Biomedical Problems, Russian Academy of Sciences
Email: HindIII@yandex.ru
Moscow, Russia
Yu. A Romanov
National Medical Research Center of Cardiology named after academician E.I. Chazov, Ministry of Health of the Russian Federation; CryoCenter Cord Blood BankMoscow, Russia; Moscow, Russia
L. B Buravkova
Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia
References
- Ruggiu A. and Cancedda R. Bone mechanobiology, gravity and tissue engineering: effects and insights: Bone mechanobiology and tissue engineering. J. Tissue Eng Re_gen Med., 9 (12), 1339–1351 (2015). doi: 10.1002/term.1942
- Ragelle H., Naba A., Larson B. L., Zhou F., Prijić M., Whittaker C. A., Rosario A. D., Langer R., Hynes R. O., and Anderson D. G. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Bio_materials, 128, 147–159 (2017). doi: 10.1016/j.biomaterials.2017.03.008
- Andreeva E., Matveeva D., Zhidkova O., Zhivodernikov I., Kotov O., and Buravkova L. Real and simulated microgravity: focus on mammalian extracellular matrix. Life (Basel), 12 (9), 1343 (2022). doi: 10.3390/life12091343
- Buravkova L., Larina I., Andreeva E., and Grigoriev A. Microgravity effects on the matrisome. Cells, 10 (9), 2226 (2021). doi: 10.3390/cells10092226
- Van Loon J. J. W. A. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res., 39 (7), 1161–1165 (2007). doi: 10.1016/j.asr.2007.02.016
- Buken C., Sahana J., Corydon T. J., Melnik D., Bauer J., Wehland M., Kruger M., Baik S., Abuagela N., Infanger M., and Grimm D. Morphological and molecular changes in juvenile normal human fibroblasts exposed to simulated microgravity. Sci. Rep., 9 (1), 11882 (2019). doi: 10.1038/s41598-019-48378-9
- Ebnerasuly F., Hajebrahimi Z., Tabaie S. M., and Darbouy M. Simulated microgravity condition alters the gene expression of some ECM and adhesive molecules in adipose-derived stem cells. Int. J. Mol. Cell. Med., 7 (3), 146 (2018). doi: 10.22088/IJMCM.BUMS.7.3.146
- Живодерников И. В., Ратушный А. Ю., Матвеева Д. К. и Буравкова Л. Е. Белки внеклеточного матрикса и транскрипция линейно-ассоциированных генов в мезенхимных стромальных клетках при моделировании эффектов микроравитации. Бюл. эксперимент. биологии и медицины, 170 (8), 201–204 (2020).
- Romanov Yu. A., Balashova E. E., Volejna N. E., Kabaeva N. V., Dugina T. N., and Sukhikh G. T. Isolation of multipotent mesenchymal stromal cells from cryopreserved human umbilical cord tissue. Bull. Exp. Biol. Med., 160 (4), 530–534 (2016). doi: 10.1007/s10517-016-3213-9
- Imura T., Nakagawa K., Kawahara Y., and Yuge L. Stem cell culture in microgravity and its application in cell-based therapy. Stem Cells Devel., 27 (18), 1298–1302 (2018). doi: 10.1089/scd.2017.0298
- Livak K. J. and Schmittegen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods, 25 (4), 402–408 (2001). doi: 10.1006/meth.2001.1262
- Halper J. and Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombo-spondins. Progr. Herit. Soft Connective Tissue Dis., 802, 31–47 (2014). doi: 10.1007/978-94-007-7893-1_3
- Morandi E. M., Verstappen R., Zwierzina M. E., Geley S., Pierer G., and Ploner C. ITGAV and ITGA5 diversely regulate proliferation and adipogenic differentiation of human adipose derived stem cells. Sci. Rep., 6 (1), 28889 (2016). doi: 10.1038/srep28889
- Hynes R. O. Integrins: bidirectional, allosteric signaling machines. Cell, 110 (6), 673–687 (2002). doi: 10.1016/S0092-8674(02)00971-6
- Levi B., Wan D. C., Glotzbach J. P., Hyun J., Januszyk M., Montoro D., Sorkin M., James A. W., Nelson E. R., Li S., Quarto N., Lee M., Gurtner G. C., and Longaker M. T. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) Signaling. J. Biol. Chem., 286 (45), 39497–39509 (2011). doi: 10.1074/jbc.M111.256529
- Li C. G., Wilson P. B., Bernabeu C., Raab U., Wang J. M., and Kumar S. Immunodetection and characterisation of soluble CD105-TGFβ complexes. J. Immunol. Methods, 218 (1–2), 85–93 (1998). doi: 10.1016/S0022-1759(98)00118-5
- Kisselbach L., Merges M., Bossie A., and Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology, 59 (1), 31–44 (2009). doi: 10.1007/s10616-009-9190-3
- Rege T. A. and Hagood J. S. Thy -I as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J., 20 (8), 1045–1054 (2006). doi: 10.1096/fj.05-5460rev
- Pao S. I., Chien K. H., Lin H. T., Tai M. C., Chen J. T., and Liang C. M. Effect of microgravity on the mesenchymal stem cell characteristics of limbal fibroblasts. J. Chinese Med. Association, 80 (9), 595–607 (2017). doi: 10.1016/j.jcma.2017.01.008
- Yuge L., Kajiume T., Tahara H., Kawahara Y., Umeda C., Yoshimoto R., Shu-Liang Wu., Yamaoka K., Asashima M., Kataoka K., and Ide T. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev., 15 (6), 921–929 (2006). doi: 10.1089/scd.2006.15.921
- De Laporte L., Rice J. J., Tortelli F., Hubbell J. A. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PloS One, 8 (4), e62076 (2013). doi: 10.1371/journal.pone.0062076
- Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol., 47, 54–65 (2015). doi: 10.1016/j.matbio.2015.05.006
- Marzeda A. M. and Midwood K. S. Internal affairs: Tenascin-C as a clinically relevant, endogenous driver of innate immunity. J. Histochem. Cytochem., 66 (4), 289–304 (2018). doi: 10.1369/0022155418757443
- Furmento V. A., Marino J., Blank V. C., and Roguin L. P. The granulocyte colony-stimulating factor (G-CSF) up-regulates metalloproteinase-2 and VEGF through PI3K/Akt and Erk1/2 activation in human trophoblast Swan 71 cells. Placenta, 35 (11), 937–946 (2014). doi: 10.1016/j.placenta.2014.09.003
- Ponte A. L., Ribeiro-Fleury T., Chabot V., Gouilleux F., Langonne A., Hérault O., Charbord P., and Domenech J. Granulocyte-colony-stimulating factor stimulation of bone marrow mesenchymal stromal cells promotes CD34+ cell migration via a matrix metalloproteinase-2-dependent mechanism. Stem Cells Devel., 21 (17), 3162–3172 (2012). doi: 10.1089/scd.2012.0048
- Kohan M., Puxeddu I., Reich R., Levi-Schaffer F., and Berkman N. Eotaxin-2/CCL24 and eotaxin-3/CCL26 exert differential proffibrogenic effects on human lung fibroblasts. Annals of Allergy, Asthma & Immunology, 104 (1), 66–72 (2010). doi: 10.1016/j.anai.2009.11.003
- Pufe T., Harde V., Petersen W., Goldring M. B., Tillmann B., and Mentlein R. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J. Pathol., 202 (3), 367–374 (2004). doi: 10.1002/path.1527
- Yang H. W., Park J. H., Jo M. S., Shin J. M., Kim D., and Park I. H. Eosinophil-derived osteopontin induces the expression of pro-inflammatory mediators and stimulates extracellular matrix production in nasal fibroblasts: The role of osteopontin in eosinophilic chronic rhinosinusitis. Front. Immunol., 13, 777928 (2022). doi: 10.3389/fimmu.2022.777928
- Ong V. H., Carulli M. T., Xu S., Khan K., Lindahl G., Abraham D. J., and Denton C. P. Cross-talk between MCP-3 and TGFβ promotes fibroblast collagen biosynthesis. Exp. Cell Res., 315 (2), 151–161 (2009). doi: 10.1016/j.yexcr.2008.11.001
- Ong V. H., Evans L. A., Shiwen X., Fisher I. B., Rajkumar V., Abraham D. J., Black C. M., and Denton C. P. Monocyte chemoattractant protein 3 as a mediator of fibrosis: Overexpression in systemic sclerosis and the type 1 tight-skin mouse. Arthritis & Rheumatism, 48 (7), 1979–1991 (2003). doi: 10.1002/art.11164
- Shan L., Wang F., Zhai D., Meng X., Liu J., and Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed. Pharmacother., 161, 114472 (2023). doi: 10.1016/j.biopha.2023.114472
- McQuibban G. A., Gong J. H., Wong J. P., Wallace J. L., Clark-Lewis I., and Overall C. M. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood, 100 (4), 1160–1167 (2002). doi: 10.1182/blood.V100.4.1160.h81602001160_1160_1167
- Plenz G., Eschert H., Beissert S., Arps V., Sindermann J. R., Robenek H., and Volker W. Alterations in the vascular extracellular matrix of granulocyte macrophage colony-stimulating factor (GM-CSF)-deficient mice. FASEB J., 17 (11), 1451–1457 (2003). doi: 10.1096/fj.02-1035com
- Rubbia-Brandt L., Sappino A. P., and Gabbiani G. Locally applied GM-CSF induces the accumulation of α-smooth muscle actin containing myofibroblasts. Virchows Archiv B Cell Pathol., 60 (1), 73–82 (1991). doi: 10.1007/BF02899530
- Gutschalk C. M., Yanamandra A. K., Linde N., Meides A., Depner S., and Mueller M. M. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression. Cancer Med., 2 (9), 117–129 (2013). doi: 10.1002/cam4.20
- Geremias A. T., Carvalho M. A., Borojevic R., and Monteiro A. N. TGF β1 and PDGF AA override collagen type I inhibition of proliferation in human liver connective tissue cells. BMC Gastroenterol., 4 (1), 30 (2004). doi: 10.1186/1471-230X-4-30
- Somasundaram R., and Schuppan D. Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB). J. Biol. Chem., 271 (43), 26884–26891 (1996). doi: 10.1074/jbc.271.43.26884
- Huang P., Russell A. L., Lefavor R., Durand N. C., James E., Harvey L., Zhang C., Countryman S., Stodieck L., and Zubair A. C. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. Microgravity, 6 (1), 1–12 (2020). doi: 10.1038/s41526-020-0106-z
- Живодерников И. В., Ратушный А. Ю. и Буравкова Л. Б. Секреторная активность мезенхимных стромальных клеток разной степени коммитирования при моделировании эффектов микротравматики. Клеточные технологии в биологии и медицине, 4, 272–277 (2020). doi: 10.47056/1814-3490-2020-4-272-277
- Bucaro M. A., Zahm A. M., Risbud M. V., Ayaswamy P. S., Mukundakrishnan K., Steinbeck M. J., Shapiro I. M., and Adams C. S. The effect of simulated microgravity on osteoblasts is independent of the induction of apoptosis. J. Cell Biochem., 102 (2), 483–495 (2007). doi: 10.1002/jcb.21310
- Zayzadoon M., Gathings W. E., and McDonald J. M. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology, 145 (5), 2421–2432 (2004). doi: 10.1210/en.2003-1156
- Ontiveros C. and McCabe L. R. Simulated microgravity suppresses osteoblast phenotype, Runx2 levels and AP-1 transactivation. J. Cell Biochem., 88 (3), 427–437 (2003). doi: 10.1002/jcb.10410
- Hu L. F., Qian J. B., Wang F., and Shang P. Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int., 39 (4), 364–372 (2015). doi: 10.1002/cbin.10391
- Mann V., Grimm D., Corydon T. J., Krüger M., Wehland M., Riwald S., Sahana J., Kopp S., Bauer J., Reseland J. E., Infanger M., Lian A. M., Okoro E., and Sundaresan A. Changes in human foetal osteoblasts exposed to the random positioning machine and bone construct tissue engineering. Int. J. Mol. Sci., 20 (6), 1357 (2019). doi: 10.3390/ijms20061357
- Naderi M. S., Hajebrahimi Z., Ebnerasuly F., and Tabale S. M. Expression profiling of matrix metalloproteinase in adipose-derived stem cells under simulated microgravity condition. Health Biotechnol. Biopharma, 2 (4), 32–39 (2019). doi: 10.22034/HBB.2019.04
- Ranieri D., Proietti S., Dinicola S., Masiello M. G., Rosato B., Ricci G., Cucina A., Catizone A., Bizzarri M., and Torrisi M. R. Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Sci. Rep., 7 (1), 538 (2017). doi: 10.1038/s41598-017-00602-0
- Giachelli C. M. and Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol., 19 (7), 615–622 (2000). doi: 10.1016/S0945-053X(00)00108-6
- Rangaswami H., Bulbulc A., and Kundu G. C. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol., 16 (2), 79–87 (2006). doi: 10.1016/j.tcb.2005.12.005
Supplementary files




