Study of morpholithodynamics and modeling of coastal processes on Iturup island (Kuril islands)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Sediment redistribution on the beach and offshore slope are the main processes forming the accumulating marine terraces of Iturup Island. The intensity of these processes is controlled by tectonic and seismic activity associated with Kuril-Kamchatka subduction zone. The long-term changes of the island ground level are due to vertical tectonic movement, while the short-term changes are associated with seismicity. Studies of morpholithodynamic processes in the coastal zone on the island of Iturup were carried out using the methods of paleoseismology, geomorphological analysis, and computer modeling. Based on previously collected data, analysis of topographic maps and satellite imagery, and field measurements on Iturup Island in 2022–2023, digital maps and digital elevation models (DEMs) of the coastal zone of the Kuril Bay were constructed. Four buried scarps were discovered within the beach ridge sediments on the accumulative marine terrace, indicating vertical coseismic subsidence that periodically occurs on the Sea of Okhotsk coast of Iturup. Based on tephra from the Tarumae volcano, the approximate age of the young beach ridges has been established (about 280 years). Applied 3D modeling predicted the flooding of the territory at different sea levels. Coastal profile of equilibrium developed from the DEM using the Dean model indicated that the modern marine terrace is stable. The SBEACH software was used to simulated storm surges and storm frequencies at different sea level scenarios. It was concluded that the erosion of the accumulative marine terrace, where the city of Kurilsk is located is possible either by catastrophic storms of rare recurrence, or after abrupt coseismic subsidence of the coast, which can occur during a strong earthquake in the area of the southern segment of the Kuril-Kamchatka subduction zone.

Texto integral

Acesso é fechado

Sobre autores

A. Khomchanovsky

Institute of Volcanology and Seismology FEB RAS

Autor responsável pela correspondência
Email: khomscience@mail.ru
Rússia, Petropavlovsk-Kamchatsky

F. Batanov

Institute of Volcanology and Seismology FEB RAS

Email: khomscience@mail.ru
Rússia, Petropavlovsk-Kamchatsky

T. Pinegina

Institute of Volcanology and Seismology FEB RAS

Email: khomscience@mail.ru
Rússia, Petropavlovsk-Kamchatsky

O. Khubaeva

Institute of Volcanology and Seismology FEB RAS

Email: khomscience@mail.ru
Rússia, Petropavlovsk-Kamchatsky

Bibliografia

  1. Aedo D., Cisternas M., Melnick D. et al. (2023) Decadal coastal evolution spanning the 2010 Maule earthquake at Isla Santa Maria, Chile: Framing Darwin’s accounts of uplift over a seismic cycle. Earth Surf. Processes Landforms. Vol. 48. No. 12. P. 2319–2333. https://doi.org/10.1002/esp.5615
  2. Afanas’yev V.V. (2020) Morfolitodinamicheskie protsessy i razvitie beregov kontaktnoi zony subarkticheskikh i umerennykh morei Severnoi Patsifiki (Morpholithodynamic processes and coastal development of the contact zone of the subarctic and temperate seas of the North Pacific). Yuzhno-Sakhalinsk: IMGG FEB RAS (Publ.). 233 p. (in Russ).
  3. Atlas Kurilʹskikh ostrovov (Atlas of the Kuril Islands) (2009) Moscow–Vladivostok: IPTS “DIK” (Publ.). 516 p. (in Russ).
  4. Atwater B.F., Hemphill-Haley E. (1997) Recurrence Intervals for Great Earthquakes of the Past 3500 Years at Northeastern Willapa Bay. Washington. U.S. Geol. Surv. Prof. Pap. No. 1576. P. 109. https://doi.org/10.3133/pp1576
  5. Atwater B.F., Hemphill-Haley E. et al. (1995) Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake Spectra. Vol. 11. No. 1. P. 1–18. https://doi.org/10.1193/1.1585800
  6. Bloh Ju.I., Bondarenko V.I., Dolgal’ A.S. et al. (2022) Submarine volcanoes of the Okhotomorsky slope of Iturup Island (Kuril Island Arc). In: Materialy konferentsii “Voprosy teorii i praktiki geologicheskoi interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh polei”. Saint Petersburg: VSEGEI (Publ.). P. 31–34 (in Russ).
  7. Bondevik S., Gjevik B., Sørensen M.B. (2013) Norwegian seiches from the giant 2011 Tohoku earthquake. Geophys. Res. Lett. Vol. 40. No. 13. P. 3374–3378. https://doi.org.10.1002/grl.50639
  8. Bruun P. (1988) The Bruun rule of erosion by sea-level rise: a discussion on large-scale two- and three-dimensional usage. J. Coastal Res. Vol. 4. No. 4. P. 627–648.
  9. Canitano A., Bernard P., Allgeyer S. (2017) Observation and modeling of the seismic seiches triggered in the Gulf of Corinth (Greece) by the 2011 Mw 9.0 Tohoku earthquake. J. of Geodynamics. Vol. 109. P. 24–31. https://doi.org/10.1016/j.jog.2017.06.001
  10. Dean R.G. (2002) Beach nourishment. Theory and practice. World Scientific. 398 p.
  11. Dean R.G., Maurmeyer E.M. (1983) Models for Beach Profile Response. CRC Handbook of Coastal Processes and Erosion. P.D. Komar ed. Boca Raton, Fl.: Coastal Research Center Press. 305 p.
  12. Dunayev N.N., Leontiev I.O., Afanas’ev V.V et al. (2020) Morphodynamics of the shore composed of pyroclastic material (on the example of Iturup Island of the Kuril Archipelago). In: Trudy IX Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniya i obrazovanie (MARESEDU-2020)”. Tver: PolyPRESS (Publ.). P. 67–70 (in Russ).
  13. Gidrometeorologiya i gidrokhimiya morei. Tom IX. Okhotskoe more. Vypusk 1. Gidrometeorologicheskie usloviya. Spravochnik (Hydrometeorology and hydrochemistry of the seas, Vol. IX). (1998) Saint Petersburg: Gidrometeoizdat (Publ.). 343 p. (in Russ).
  14. Granin N.G., Radziminovich N.A., Kucher K.M. (2014) Generation of Lake Baikal level oscillations by remote strong earthquakes. Doklady Earth Sci. Vol. 455. No. 2. P. 224–228 (in Russ). https://doi.org/10.7868/S0869565214080180
  15. Hallermeier R.G. (1981) A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering. Vol. 4. P. 253–277. https://doi.org/10.1016/0378-3839(80)90022-8
  16. Hanson H., Kraus N.C. (1989) GENESIS: Generalized model for simulating shoreline change. Tech. Report CERC-89-19. Coastal Engineering Research Center. US Army Corps of Engineers. 247 p.
  17. Ignatov E.I. (2004) Beregovye morfosistemy (Coastal morphosystems). Moskva–Smolensk: Madzhenta (Publ). 352 p. (in Russ).
  18. Iwaki M., Toda T. (2022) Seismic seiche-related oscillations in Lake Biwa, Japan, after the 2011 Tohoku earthquake. Scientific Reports. Vol. 12. No. 1. P. 19357. https://doi.org/10.1038/s41598-022-23939-7
  19. Kaplin P.A., Leont’ev O.K., Luk’janova S.A. et al. (1991) Berega (Coasts). Moscow: Myslʹ (Publ.). 480 p. (in Russ).
  20. Khabidov A. Sh., Marusin K.V., Zhindarev L.A. et al. (2012) Response of large reservoir shores to water level fluctuations: classical and non-classical scenarios. Geomorfologiya. No. 3. P. 61–68 (in Russ).
  21. Khuzeeva M.O. (2015) Repeatability of storm waves in the coastal part of the Southern Kuril Ridge from observations of coastal hydrometeorological stations. In: Materialy konferentsii “Geodinamicheskie protsessy i prirodnye katastrofy. Opyt Neftegorska”. Vladivostok: Dalnauka (Publ.). P. 381–385 (in Russ).
  22. Kostyanitsyn M.N., Logachev L.A., Zenkovich V.P. (Eds.). (1975) Rukovodstvo po metodam issledovanii i raschetov peremeshheniya nasosov i dinamiki beregov pri inzhenernykh izyskaniyakh (Manual on research methods and calculations of material movement and coastal dynamics in engineering surveys). Moscow: Hydrometeoizdat (Publ.) 238 p. (in Russ).
  23. Kuznetsov M.A. (2021) Coasts of Iturup Island: morphology, dynamics, forecast. Geomorfologiya. Vol. 52. No. 1. P. 51–60. https://doi.org/10.31857/S0435428121010089
  24. Larson M., Kraus N.C., Byrnes M.R. (1990) SBEACH: numerical model for simulating storm-induced beach change. Report 2. Numerical formulation and model tests. 115 p.
  25. Leontiev I.O. (2012) Predicting shoreline evolution on a centennial scale using the example of the Vistula (Baltic) spit. Oceanology. Vol. 52. No. 5. P. 700–709 (in Russ). https://doi.org/10.1134/S0001437012050104
  26. Leontiev I.O. (2018) Modeling a shore profile formed by storm cycle impact. Oceanology. Vol. 58. No. 6. P. 892–899. https://doi.org/10.1134/S0001437018060085
  27. Leontiev I.O. (2022) Evaluation of depth of closure on a sandy coast. Oceanology. Vol. 62. No. 2. P. 258–264 (in Russ). https://doi.org/10.1134/S0001437022020102
  28. Leontiev I.O., Koshelev K.B., Marusin K.V. et al. (2009) Software products for mathematical modeling and forecasting of coastal processes of wave nature. In: Trudy Mezhdunarodnoi konferentsii “Sozdanie iskusstvennykh plyazhei, ostrovov i drugikh sooruzhenii v beregovoi zone morei, ozer i vodokhranilishch”. Novosibirsk: Sibirskoe otdelenie RAN (Publ.). P. 24–31 (in Russ).
  29. Leontiev I.O., Afanas’yev V.V. (2016) Evolution of the lagoon coast in northeastern Sakhalin exemplified by the Nyiskii inlet‒Plastun spit coastal system. Oceanology. Vol. 56. No. 4. P. 564–571. https://doi.org/10.7868/S0030157416030138
  30. Leontiev I.O., Khabidov A. Sh. (2009) Modelirovanie dinamiki beregovoi zony. Obzor sovremennykh issledovanii (Modeling coastal zone dynamics. Review of current research). Novosibirsk: Sibirskoe otdelenie RAN (Publ). 90 p. (in Russ).
  31. Melekestsev I.V., Brajceva O.A., Jerlih Je.N. et al. (1974) Kamchatka. Kuril’skie i Komandorskie ostrova (Kamchatka. Kuril and Commander Islands). Moscow: Nauka (Publ.). 437 p. (in Russ).
  32. National Geophysical Data Center. World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. [Electronic data]. Access way: https://www.ngdc.noaa.gov/hazard/tsu.shtml (access date: 05.12.2023).
  33. Nosov M.A., Brajceva O.A., Jerlih Je.N. et al. (2018) Influence of the Earth’s rotation on tsunami waves generated by the 2013 deep-focus Okhotomorsk earthquake. Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya. No. 6. P. 117–123 (in Russ).
  34. Nosov M.A., Brajceva O.A., Jerlih Je.N. et al. (2019) The role of Coriolis force in the dynamics of waves excited in the ocean by deep-focus earthquakes. Vychislitel’nye tekhnologii. Т. 24. No. 1. P. 73–85. https://doi.org/10.25743/ICT.2019.24.1.006
  35. Okada Y. (1985) Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. Vol. 75. No. 4. P. 1135–1154.
  36. Pchelkin V.I., Gal’versen V.G., Taranuha V.I. et al. (1986) Otchet o poiskakh termal’nykh vod v tsentral’noi chasti o. Iturup (otchet Iturupskoi GGP za 1977–1986 gg.) (Report on the search for thermal waters in the central part of Iturup Island (report of the Iturupskaya GGP for 1977–1986)). Yuzhno-Sakhalinsk: SGGE PGO “Sakhalingeologiya” (Publ.). 1496 p. (in Russ).
  37. Peterson C.D., Doyle D.L., Barnett E.T. (2000) Coastal flooding and beach retreat from coseismic subsidence in the central Cascadia margin, USA. Environ. Eng. Geosci. Vol. 6. No. 3. P. 255–269. https://doi.org/10.2113/gseegeosci.3.255
  38. Pinegina T.K., Razzhigaeva N.G., Degterjov A.V. et al. (2023) On the traces of Holocene strong earthquakes of Iturup Island. Priroda. No. 3 (1291). P. 51–57 (in Russ). https://doi.org/10.7868/S0032874X23030055
  39. Pinegina T.K., Kozhurin A.I. (2023) Coseismic and slow tectonic deformations of the island arc: according to studies of the eastern coast of the Kamchatka Peninsula (Far East, Russia). Geotektonika. No. 6. P. 1–14 (in Russ). https://doi.org/10.31857/S0016853X23060061
  40. Pinegina T.K., Bourgeois J., Bazanova L.I. et al. (2020) Coseismic coastal subsidence associated with unusually wide rupture of prehistoric earthquakes on the Kamchatka subduction zone: A record in buried erosional scarps and tsunami deposits. Quat. Sci. Rev. Vol. 233. 106171. https://doi.org/10.1016/j.quascirev.2020.106171
  41. Rossiiskaya sistema preduprezhdeniya o tsunami (SPTS) (Russian Tsunami Warning System (RTWS)) [Electronic data]. Access way: https://rtws.ru/.
  42. Safyanov G.A. (1996) Geomorfologiya morskikh beregov (Coastal geomorphology). Moscow: MGU (Publ.). 400 p. (in Russ).
  43. Satake K., Nanayama F., Yamaki S. (2008) Fault models of unusual tsunami in the 17th century along the Kuril trench. Earth, planets and space. Vol. 60. P. 925–935. https://doi.org/10.1186/BF03352848
  44. Shevchenko G.V. (2015) Estimation of tsunami heights of rare recurrence taking into account the probability of imposition on the tide or surge for the coast of the Russian Far East. In: Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii. Petropavlovsk-Kamchatskii: Geofizicheskaya sluzhba (Kamchatskii filial). P. 383–388 (in Russ).
  45. Shuiskii Yu.D. (2018) Istoriya razvitiya i metodologiya beregovedeniya (History of development and methodology of coastal science). Odessa: Astroprint (Publ.). 448 p. (in Russ).
  46. Solovyov S.L., Goh J.N., Kim H.S. (1986) Katalog tsunami v Tikhom okeane (Catalog of tsunamis in the Pacific, 1969–1982). Moscow: MGK AN SSSR (Publ.). 163 p. (in Russ.).
  47. Suzuki T. (2012) Seismic seiche occurred at Lake Saiko due to the 2011 off the Pacific Coast of Tohoku earthquake. Proc. Jpn. Soc. Civil Eng. A. Vol. 1. P. 68. https://doi.org/10.2208/jscejseee.68.I_152
  48. Tamura T. (2012) Beach ridges and prograded beach deposits as palaeoenvironment records. Earth Sci. Rev. Vol. 114. No. 3-4. P. 279–297. https://doi.org/10.1016/j.earscirev.2012.06.004
  49. Tsukanova E. (2022) The Observations of the 2022 Tonga-Hunga Tsunami Waves in the Sea of Japan. Pure Appl. Geophys. Vol. 179. P. 4279–4299. https://doi.org/10.1007/s00024-022-03191-w
  50. Yachmenev V.E., Khuzeeva M.O. (2017) Repeatability of storm surge on the Southern Kuril Islands based on visual observations and instrumental measurements. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk. No. 1(191). P. 121–127 (in Russ).
  51. Zenkovich V.P. (1962) Osnovy ucheniya o razvitii morskikh beregov (Fundamentals of the doctrine of the development of sea coasts). Moscow: USSR Academy of Sciences (Publ). 710 p. (in Russ).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Map of Kuril Bay (study area shown as shaded circle). 1 – water bodies; 2 – swamp; 3 – rivers; 4 – roads.

Baixar (1MB)
3. Fig. 2. Bathymetric survey of the Kuril Bay (isobaths are drawn at 10 m intervals). 1 – depth measurement points (tacks); 2 – depth markers; 3 – isobaths.

Baixar (1MB)
4. Fig. 3. Map of the marine accumulative terrace and shoreface of the Kuril Bay. 1 – measurement profiles; 2 – isobaths; 3 – rivers; 4 – roads; 5 – buried ledges; 6 – cliff; 7 – water bodies.

Baixar (1MB)
5. Fig. 4. Coastal profiles (the sea shore on the left) and location of buried scarps (black lines – presumed position in the soil-pyroclastic sequence). (а) – location of the study area; (б) – location of profiles on the marine terrace; photo of scarps in Fig. 12, spatial location of scarps in Fig. 3.

Baixar (931KB)
6. Fig. 5. Results of equilibrium beach profile simulation for the Kuril Bay. 1 – initial shoreface; 2 – theoretical equilibrium beach profile based on the Dean model.

Baixar (128KB)
7. Fig. 6. Shoreface profiles of the Kuril Bay and linear trend (middle profile). 1 – the mouth of the Kurilka River; 2 – profile Б; 3 – profile B; 4 – medium profile.

Baixar (153KB)
8. Fig. 7. Results of equilibrium beach profiles modeling for the Kuril Bay. Profiles: (а) – north-western profile (closest to the mouth of the Kurilka River), (б) – central profile, (в) – southeastern profile, (г)– equilibrium beach profile of the combined profile (location of profiles in Figs. 4 and 13). 1 – initial shoreface; 2 – theoretical equilibrium beach profiles based on Dean’s model.

Baixar (758KB)
9. Fig. 8. Possible reshaping of the Kuril Bay coastal after a rise in relative sea level by 1 m as a result of hydrodynamic and geodynamic factors. 1 – initial profile; 2 – blurred section; 3 – road; 4 – initial sea level; 5 – sea level after lowering.

Baixar (188KB)
10. Fig. 9. Inundation of the lower areas of Kurilsk at sea level rise of 1 m (yellow line) and 2 m (red line); shading in the figures on the right indicates the lowland near Lake Lebedinoe (1.5 km from the shore of the Sea of Okhotsk).

Baixar (1MB)
11. Fig. 10. Reshape of profile 2 by a storm of 2% recurrence (172 h/year, H = 5 m). 1 – initial profile; 2 – storm of 2% recurrence, H = 5 m.

Baixar (218KB)
12. Fig. 11. Reshape of profile 3 by different storms at different levels (enlarged scale of the foreshore zone). 1 – initial profile; 2 – extreme storm (H = 10 m, level +2 m); 3 – storm 2% recurrence (level +3 m).

Baixar (246KB)
13. Fig. 12. Photo of buried scarps on the beach ridges of the Kuril Bay accumulative terrace and trench section of scarp “(а)” (coordinates: 45.22137, 147.8673). Scarps: (а) – second scarp, (б) – third scarp, (в) – first scarp; (г) – trench section of scarp “(а)”. Location of scarps in Figs. 3 and 4. 1 – compacted sea sand (cover of marine storm sediments); 2 – colluvial cone of outflow; 3 – layered pebble sediments of the riverbed; 4 – sediments of a shallow reservoir (seasonal floods); 5 – loamy horizon with light ash content (Ta-a?); 6 – layered sea sand.

Baixar (1MB)
14. Fig. 13. General view of the accumulative terrace of the Kuril Bay with the location of measured profiles and buried scarps (numerals denote profiles of beach ridges (see Fig. 4), letters – profiles of the measured shoreface (see Figs. 6, 7).

Baixar (1MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025