Bedia landslide site in eastern Abkhazia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents the results of geomorphological studies of the area of widespread landslide processes in the upper reaches of the Okhodzha River basin (right tributary of the Okum River, Black Sea basin). The characteristics of the geological and geomorphological conditions and factors that contributed to the occurrence of a large landslide in January 2021 are given. It has been established that the main type of landslides within the Bedia site are landslide flows developing along the roof of Eocene and Oligocene (Khadum horizon and Maikop Formation) claystones. The thickness of landslide bodies ranges from to 34–78 m. The slope cover is mainly subject to displacement, including the bodies of previous landslides. It is shown that the main condition determining the development of landslide processes is the position of the Bedia landslide site at the junction of the water-logged carbonate rocks of Cretaceous age exposed along the Southern macroslope of the Greater Caucasus, and denuded foothills composed of the Paleogene clayey rocks. The landslides are triggered by prolonged precipitation and facilitated by the coincidence of the slope and the bedrock dip direction on the left slope of the Okhodzha River valley. Due to the large-scale development of landslide processes accompanied by erosion, an erosion-landslide badland was formed on the left bank of the Okhodzha River. The most unstable areas, not recommended for land-use due to periodic landslide movements, are the slopes of small valleys – left tributaries of the Okhodzha River, as well as their wide bottoms filled with landslide deposits. According to the main features of the geological and geomorphological structure, the studied area is similar to the Novoafonsky, Eshersky and Macharsky landslide areas previously described in scientific literature. Economic development of these territories should include not only constructive measures to protect against landslides (retaining walls, artificial terracing, etc.), but also the installation of drainage systems to reduce the water saturation of slope deposits and the water content at the base of the slope.

Texto integral

Acesso é fechado

Sobre autores

E. Eremenko

Lomonosov Moscow State University, Faculty of Geography

Autor responsável pela correspondência
Email: eremenkoeaig@gmail.com
Rússia, Moscow

R. Zhiba

Institute of Ecology, Academy of Sciences of Abkhazia

Email: eremenkoeaig@gmail.com
Abkhazia, Sukhum

Yu. Fuzeina

Lomonosov Moscow State University, Faculty of Geography

Email: eremenkoeaig@gmail.com
Rússia, Moscow

I. Neshenko

Institute of Ecology, Academy of Sciences of Abkhazia

Email: eremenkoeaig@gmail.com
Abkhazia, Sukhum

N. Zaraiskiy

Lomonosov Moscow State University, Faculty of Geography

Email: eremenkoeaig@gmail.com
Rússia, Moscow

R. Dbar

Institute of Ecology, Academy of Sciences of Abkhazia

Email: eremenkoeaig@gmail.com
Abkhazia, Sukhum

Bibliografia

  1. Adamia S.A., Chkhotua T.G., Gavtagze T.T. et al. (2015) Tectonic setting of Georgia-Eastern Black Sea: a review. Geological Society London Special Publications. Vol. 428. Iss. 1. https://doi.org/10.1144/SP428.6
  2. Atlas of the Georgian SSR (Atlas Gruzinskoj SSR) (1964). Tbilisi–Moscow: GUGK GGK SSSR (Publ.). 270 p. (in Russ).
  3. Bolashvili N., Tsereteli E., Kutsnashvili O. et al. (2015) Climate as an integral synthesizer in development-reactivation processes of landslide and diagnostic criterion of its evaluation. Engineering geology for Society and Territory. Vol. 2. P. 1781–1786. https://doi.org/10.1007/978-3-319-09057-3_315
  4. Bondyrev I.V., Tsereteli E.D., Uzun A., Zaalishvili V.B. (2014) Landslides of the South Caucasus. Geologiya i geofizika Yuga Rossii. Vol. 2. No. 4. P. 105–123 (in Russ).
  5. Bukiya S.G., Abamelik E.M. (1971) Atlas of Geological Maps and Maps of Useful Fossils of the Abkhaz ASSR at a Scale of 1:50 000 (Atlas geologicheskih kart i kart poleznyh iskopaemyh Abhazskoi ASSR masshtaba 1:50 000). Moscow: Vsesoyuznyi aerogeologicheskii trest Ministerstva geologii SSSR (Publ.). 34 p. (in Russ).
  6. Bukiya S.G., Kolosovskaya O.V., Abamelik E.M. (1971) Explanatory note to the geological map and mineral resource map of the Abkhaz ASSR at a scale of 1:50 000 (Ob”yasnitel’naya zapiska k geologicheskoi karte i karte poleznykh iskopaemykh Abhazskoi ASSR masshtaba 1:50 000). Moscow: Kopiroval’no-kartograficheskoe predpriyatie Vsesoyuznogo geologicheskogo fonda (Publ.). 338 p. (in Russ).
  7. Bulygin A.M., Gruzinov V.M., Voroncov A.A. et al. (2023) Novaya geografiya Chernogo morya (New geography of the Black Sea). Obninsk: Artifeks (Publ.). 208 p. (in Russ).
  8. Ekba Ya.A., Ahsalba A.K., Marandidi S.I., Korsantiya A.Z. (2021) Transformation of atmospheric precipitation in Abkhazia due to regional climate warming. In: Materialy Vserossiiskoi otkrytoi konferentsii po fizike oblakov i aktivnym vozdeistviyam na gidrometeorologicheskie protsessy. Nal’chik: Print Tsenter (Publ.). P. 460–464 (in Russ).
  9. Ekba Ya.A., Gvaramiya A.A., Dbar R.S., Ahsalba A.K. (2017) Recurrence of hazardous weather phenomena and their environmental consequences in Abkhazia. In: Sbornik materialov III Kavkazskogo ekologicheskogo foruma. Groznyi: Chechenskii gos. un-t im. A.A. Kadyrova (Publ.). P. 257–265 (in Russ).
  10. Gaprindashvili G., Van Westen C.J. (2016) Generation of a national landslide hazard and risk map for the country of Georgia. Nat. Hazards. Vol. 80. P. 69–101. https://doi.org/10.1007/s11069-015-1958-5
  11. Geologicheskii slovar’. Tom 2 (Geological Dictionary. Vol. 2.) (1973). Moscow: Nedra (Publ.). 457 p. (in Russ).
  12. Gidrogeologiya SSSR. Tom 10. Gruzinskaya SSR. (Hydrogeology of the USSR. Vol. 10. Georgian SSR.) (1970). Moscow: Nedra (Publ.). 404 p. (in Russ).
  13. Gvozdeckiy N.A. (1954) Fizicheskaya geografiya Kavkaza (Physical geography of the Caucasus). Moscow: Moskovskii universitet (Publ.). 206 p. (in Russ).
  14. Inzhenernaya geologiya SSSR. Tom 8. Kavkaz, Krym, Karpaty. (Engineering Geology of the USSR. Vol. Caucasus, Crimea, Carpathians) (1978). Moscow: MGU (Publ.). 365 p. (in Russ).
  15. Keller B.M., Menner V.V. (1945) Paleogene deposits of the Sochi region and associated underwater landslides. Byulleten’ MOIP. Otdel geologicheskii. Vol. 20. Iss. 1-2. P. 83–101 (in Russ).
  16. Kuparadze D. (2018) Catastrophic landslide in Tbilisi (Georgia) and engineering solution to the consequences. World Science. Vol. 2. No. 4(32). P. 10–18 (in Russ).
  17. Kutepova V.M., Sheko A.I. (Eds.) (2002) Ekzogennye geologicheskie opasnosti (Exogenous geological hazards). Moscow: KRUK (Publ.). 348 p. (in Russ).
  18. Mamedov S.G., Tarihazer S.A. (2023) Application of quantitative methods for assessing landslide susceptibility of the Girdimanchay River basin. Izvestiya TulGU. Nauki o Zemle. Iss. 1. P. 38–67 (in Russ).
  19. Mdinaradze L.A., Cereteli E.D., Meliksed-beg D.A. et al. (1988) General’naya skhema protivoerozionnykh meropriyatii na period 1981–2000 gody (General scheme of anti-erosion measures for the period 1981–2000). Tbilisi: Sabchota Sakartvelo (Publ.). 725 p. (in Russ).
  20. Razumovskiу R.O., Eremenko E.A., Bolysov S.I. et al. (2023). Geomorphological structure and processes in urban areas of Abkhazia. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 1. P. 65–80 (in Russ). https://doi.org/ 10.55959/MSU0579-9414-520231-65-80
  21. Saintot A., Brunet M.-F., Yakovlev F. et al. (2006) The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geological Society London Memoirs. Vol. 32. P. 277–289. https://doi.org/10.1144/GSL.MEM.2006.032.01.16
  22. Sheremet’ev I.A., Smetankina I.S., Razin S.A. et al. (2024) Geomorphological consequences of the catastrophic rainfalls of 2023 on the territory of Western Abkhazia. In: Issledovaniya molodykh geografov. Moscow: IP Erhova I.M. (Publ.). P. 14–25 (in Russ).
  23. Tarihazer S.A. (2020) Modern landslide processes of relief formation in the Greater Caucasus (within Azerbaijan). Izvestiya TulGU. Nauki o Zemle. Iss. 1. P. 120–136 (in Russ).
  24. Tatashidze Z., Tsereteli E., Bondirev I., Tsereteli N. (2006) Relevance of climatic anomalies in the development of exogeodynamic processes. Collected works of the Institute of Geography. Tbilisi. № 1(80). P. 107–120.
  25. Tihonova T.I., Smirnova V.V., Valeev L.G. et al. (2024) Exogenous geomorphological processes in the Ryapsh River basin (Western Abkhazia). In: Issledovaniya molodykh geografov. Moscow: IP Erhova I.M. (Publ.). P. 26–36 (in Russ).
  26. Tintilozov Z.K. (1976) Karstovye peshchery Gruzii (morfologicheskii analiz) (The karst caves of Georgia (morphological analysis)). Tbilisi: Metsniereba (Publ.). 310 p. (in Russ).
  27. Trifonov V.G., Sokolov S. Yu., Sokolov S.A., Hessami Kh. (2020) Mesozoic–Cenozoic Structure of the Black Sea–Caucasus–Caspian Region and Its Relationships with the Upper Mantle Structure. Geotectonics. No. 3. P. 55–81. https://doi.org/10.31857/S0016853X20030108
  28. Tsereteli E.D. (2003) Prirodno-katastroficheskie yavleniya i problema ustoichivogo razvitiya Gruzii i prigranichnykh territorii (Natural catastrophic phenomena and the problem of sustainable development of Georgia and border territories). PhD thesis. Tbilisi: TGU. 109 p. (in Russ).
  29. Tsereteli N., Tibaldi A., Alania V. et al. (2016) Active tectonics of central-western Caucasus, Georgia. Tectonophysics. Vol. 691. P. 328–344. https://doi.org/10.1016/j.tecto.2016.10.025
  30. Uzun A., Uzun S. (2004) Landslide problems in the coastal zone of the Eastern Black Sea Region, Turkey. Natural and Anthropogenic Catastrophes. P. 29–39.
  31. Vadachkoriya O.A., Dzhandzhgava I.K., Popov Yu.I. (1989) Comprehensive geological and geophysical analysis of the conditions and factors of landslide formation on the Black Sea coast of Georgia. Inzhenernaya geologiya. No. 1. P. 58–65 (in Russ).
  32. Varazanashvili O., Tsereteli N., Amiranashvili A. et al. (2012) Vulnerability, Hazards and Multiple risk assessment for Georgia. Nat. Hazards. Vol. 64. P. 2021–2056. https://doi.org/10.1007/s11069-012-0374-3
  33. Voskresenskiy S.S. (1968) Geomorfologiya SSSR (Geomorphology of the USSR). Moscow: Vysshaya shkola (Publ.). 368 p. (in Russ).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of the research area: (a) – on the overview map of the Black Sea region, (б) – within the Abkhazia.

Baixar (721KB)
3. Fig. 2. Geological and geomorphological structure of the upper reaches of the Okhodzha River basin: (a) – fragment of the geological map (Bukiya, Abamelik, 1971); (б)– geomorphological structure; (в) – transverse profile of the Okhodzha River valley along line A–Б. 1 – landslide deposits that make up the body of the 2021 landslide-flow; deposits of Quaternary age: 2 – alluvial deposits, 3 – deluvial-colluvial deposits, 4 – deluvial-landslide deposits; bedrocks of the Neogene system: 5 – sandstones and conglomerates of the Maeotian Stage, 6 – clays, sandstones, marls, limestones and conglomerates of the middle and lower subarcs of the Sarmatian Stage, 7 – sandstones, clays and marls of the Konk horizon, 8 – sandy clays, sandstones and marls of the Karagan horizon, 9 – clays, marls, sandstones, limestones and conglomerates of the Chokrak horizon, 10 – sandstones, sandy clays and marls of the Kotsakhur and Tarkhan horizons, 11 – sandstones and conglomerates with interlayers of clays of the Sakaraul horizon; bedrock of the Palaeogene system: 12 – gypsiferous sheet-bearing bituminous clays and sandstones of the Khadum horizon and Maikop Formation of the Oligocene, 13 – bituminous marls of the Upper Eocene, 14 – limestones, marls and marly limestones of the Middle and Lower Eocene, 15 – limestones and marly limestones of the Paleocene; bedrocks of the Upper Cretaceous system: 16 – thickly stratified limestones of the Danish Stage, 17 – stratified limestones of the Maastrichtian Stage, 18 – limestones and marly limestones of the Santonian and Campanian stages, 19 – limestones of the Turonian and Konyakian stages, 20 – sandstones and clays of the Cenomanian Stage; bedrock of the lower section of the Cretaceous system: 21 – clays, marly clays, marls and sandstones of the Albian Stage, 22 – marls and marly limestones of the Aptian Stage, 23 – limestones (including dolomiticised ones) of the Barremian Stage, 24 – limestones (including dolomiticised ones), sandstones, conglomerates and breccias of the Valanginian and Goterivian stages; 25 – elements of the occurrence of bedrock layers; 26 – fault position, direction and dip angle; 27 – geological boundaries (a – conformable bedding of layers, б – unconformable bedding of layers); 28 – structural-denudation summit surfaces (steepness up to 8°); slopes created by complex denudation: 29 – 8–35°, 30 – more than 35°; 31 – rounded ridge crests; 32 – accumulative alluvial levels in river valley bottoms; 33 – basement and erosional river terraces; 34 – colluvial and deluvial-landslide trains, 35 – edges of landslide-talus slopes; 36 – landslide of the 2021 (a – on the geological map, б – on the geomorphological diagram); 37 – the area of the most widespread development of landslides; 38 – river beds; 39 – thalwegs of temporary watercourses; 40 – paved roads; 41 – settlements.

Baixar (2MB)
4. Fig. 3. Landslide on the left side of the Okhodzha River valley (the shooting was carried out from a UAV in February 2021): (a) – general view of the left side of the Okhodzha River valley and the position of the landslide body; (б) – the marginal part of the landslide that shifted the bed of the Okhodzha River 25–30 m to the west. 1 – watercourses (a – Okhodzha River, б – temporary watercourses-tributaries of the Okhodzha River); 2 – roads (a – asphalt, б – dirt); landslide body: 3 – boundary of the landslide body, 4 – cracks on the surface of the landslide body; steep slope: 5 – edge of the steep slope, 6 – foot of the steep slope.

Baixar (1MB)
5. Fig. 4. Geomorphological structure of the middle part of the Okhodzha River valley. (a) – DEM constructed based on the results of the 2014 lidar survey (contours are drawn every 10 m); (б) – geomorphological structure; (в) – geomorphological profile along line A–Б (relief – according to the 2014 DEM). Structural-denudation slopes: 1 – with a steepness of up to 35°, 2 – with a steepness of more than 35°; erosional slopes: 3 – with a steepness of more than 35°, significantly transformed by landslide processes, 4 – with a steepness of less than 35°, in places transformed by landslide processes; 5 – alluvial levels in the bottom of the Okhodzhi river valley; 6 – deluvial-colluvial plume; 7 – deluvial-landslide plume; 8 – landslides, dissected by gullies; 9 – steep slopes of landslide failure; watercourses: 10 – permanent watercourses, 11 – temporary watercourses; boundaries: 12 – boundaries of the landslide body on the DEM, 13 – boundaries of the landslide body on the map; 14 – tectonic fault; 15 – area of distribution of Oligocene clay rocks.

Baixar (1MB)
6. Fig. 5. Landslide sites identified in the junction zone of mountains and hills (geological basis according to Bukiya, Abamelik, 1971). Sedimentary rocks: 1 – of the Quaternary system, 2 – of the Neogene system, 3 – of the Oligocene division of the Paleogene system (Khadum horizon and Maikop suite), 4 – of the Mekhadyr suite of the Eocene and Oligocene divisions of the Paleogene system, 5 – of the Paleocene and Eocene divisions of the Paleogene system, 6 – of the Cretaceous system, 7 – sedimentary-volcanogenic and metamorphic rocks of the Jurassic system; 8 – metamorphic rocks of the Cambrian age; igneous rocks: 9 – of the Jurassic age, 10 – of the Paleozoic; 11 – metamorphic rocks Paleozoic; 12 – faults; 13 – landslide areas (1 – Khashupsinsky, 2 – Bzybsky, 3 – Kaldakhvarsky, 4 – Primorsky, 5 – Novoafonsky, 6 – Eshersky, 7 – Macharsky, 8 – Akhutsinsky, 9 – Adzhampazransky, 10 – Bedia, 11 – Dikhazurgsky); 14 – the foothills of the mountain system of the Southern macroslope of the Greater Caucasus (bergstriches are directed towards the hills).

Baixar (690KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025