Dynamics of erosion and sediment supply in near-pristine lowland catchments of Central Siberia due to land use changes and forest fires

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article examines a quantitative assessment of basin erosion and suspended sediment yield in poorly developed catchments within the Lena River basin. The first catchment (15 740 km2) is located in the middle reaches of the Lena River near the city of Yakutsk. The second catchment (1709 km2) is located in the headward portion of the Bolshaya Cherepanikha River basin. The assessment was carried out using the erosion-accumulation model WaTEM/SEDEM, as well as a modified model developed by the State Hydrology Institute (SHI) applied to the forested catchments of the river basin. The amount of soil lost to erosion and suspended sediment yield were obtained for each catchment. The long-term average value of eroded soil within the catchment area near Yakutsk increased from 4.7 (2003–2007) to 4.9 (2015–2019) t/km2 per year most likely due to replacement of tree coverage with meadows in the areas effected by wild fires; and decreased from 7.2 (1985–1990) to 6.4 (2015–2019) t/km2 per year within the Bolshaya Cherepanikha River catchment likely due to expansion of tree coverage, decrease of meadows, and disappearance of cropland. To verify the models, the modeling results were compared with measured suspended sediment yield at gauging station. It was established that the observed value of sediment yield according to data from the Bom gauging station located within Bolshaya Cherepanikha River catchment also decreased during two studied periods from 0.41 to 0.37 t/km2 per year. The decline is explained by a decrease in the intensity of agricultural activity in the catchment, as well as an increase in the area covered by forest and a decrease in meadows. Sediment yield trends within the catchment area near the city of Yakutsk and the Lena River were also compared with each other. Thus, the measured value of suspended sediment yield in Lena at the Tabaga gauging station was characterized by an increasing trend from 8.76 to 10.82 t/km2 per year over the same periods. The results showed a significant contribution of basin erosion to sediment yield in smaller rivers (Bolshaya Cherepanikha River), while in the large rivers, like Lena River still remains very small.

Texto integral

Acesso é fechado

Sobre autores

K. Maltsev

Kazan Federal University, Institute of Ecology and Environment, Department of Landscape Ecology

Autor responsável pela correspondência
Email: mlcvkirill@mail.ru
Rússia, Kazan

S. Chalov

Kazan Federal University, Institute of Ecology and Environment, Department of Landscape Ecology; Lomonosov Moscow State University, Faculty of Geography

Email: mlcvkirill@mail.ru
Rússia, Kazan; Moscow

M. Ivanov

Kazan Federal University, Institute of Ecology and Environment, Department of Landscape Ecology

Email: mlcvkirill@mail.ru
Rússia, Kazan

T. Maltseva

Kazan Federal University, Institute of Ecology and Environment, Department of Landscape Ecology

Email: mlcvkirill@mail.ru
Rússia, Kazan

E. Finger

Lomonosov Moscow State University, Faculty of Geography

Email: mlcvkirill@mail.ru
Rússia, Moscow

E. Petrova

Kazan Federal University, Institute of Ecology and Environment, Department of Landscape Ecology

Email: mlcvkirill@mail.ru
Rússia, Kazan

Bibliografia

  1. Baartman J.E.M., Masselink R., Keesstra S.D. et al. (2013) Linking landscape morphological complexity and sediment connectivity. Earth Surf. Processes Landforms. No. 38. Iss. 12. P. 1457–1471. https://doi.org/10.1002/esp.3434
  2. Belillas C.M., Rodà F. (1993) The effects of fire on water quality, dissolved nutrient losses and the export of particulate matter from dry heathland catchments. J. Hydrol. Vol. 150. Iss. 1. P. 1–17. https://doi.org/10.1016/0022-1694(93)90153-z
  3. Bhattarai R., Dutta D. (2008) A comparative analysis of sediment yield simulation by empirical and process-oriented models in Thailand (Une analyse comparative de simulations de l’exportation sédimentaire en Thaïlande à l’aide de modèles empiriques et de processus). Hydrol. Sci. J. Vol. 53. Iss. 6. P. 1253–1269. https://doi.org/10.1623/hysj.53.6.1253
  4. Boomer K.B., Weller D.E., Jordan T.E. (2008) Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments. J. Environ. Qual. Vol. 37. Iss. 1. P. 79–89. https://doi.org/10.2134/jeq2007.0094
  5. Borrelli P., Alewell C., Alvarez P. et al. (2021) Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. Vol. 780. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  6. Borrelli P., Robinson D.A., Fleischer L.R. et al. (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. Vol. 8. No. 1. https://doi.org/10.1038/s41467-017-02142-7
  7. Borselli L., Cassi P., Torri D. (2008) Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena. Vol. 75. Iss. 3. P. 268–277. https://doi.org/10.1016/j.catena.2008.07.006
  8. Brasington J, Richards K. (1998) Interactions between model predictions, parameters and DTM scales for topmodel. Comput. Geosci. Vol. 24. No. 4. P. 299–314.
  9. Burke J M., Prepas E.E., Pinder S. (2005) Runoff and phosphorus export patterns in large forested watersheds on the western Canadian Boreal Plain before and for 4 years after wildfire. J. Environ. Eng. Sci. Vol. 4. No. 5. P. 319–325. https://doi.org/10.1139/s04–072
  10. Buryak Zh.A., Narozhnyaya A.G., Marinina O.A. (2023) Erosion risk of arable land in the Belgorod oblast. Regional’nye geosistemy. Vol. 47. No. 1. P. 101–115 (in Russ). https://doi.org/10.52575/2712-7443-2023-47-1-101-115
  11. Chalov S., Ivanov V. (2023) Catchment and in-channel sources in three large Eurasian Arctic rivers: Combining monitoring, remote sensing and modelling data to construct Ob’, Yenisey and Lena Rivers sediment budget. Catena. Vol. 230. 107212. https://doi.org/10.1016/j.catena.2023.107212
  12. Chalov S., Prokopeva K. (2022) Sedimentation and Erosion Patterns of the Lena River Anabranching Channel. Water. Vol. 14. Iss. 23. 3845. https://doi.org/10.3390/w14233845
  13. Chalov S., Prokopeva K., Habel M. (2021) North to south variations in the suspended sediment transport budget within large Siberian River deltas revealed by remote sensing data. Remote Sens. Vol. 13. Iss. 22. P. 4549. https://doi.org/10.3390/rs13224549.
  14. Cohen S., Kettner A.J., Syvitski J.P.M. et al. (2013) WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation. Comput. Geosci. Vol. 53. P. 80–93. https://doi.org/10.1016/j.cageo.2011.08.011
  15. de Vente J., Poesen J., Verstraeten G. et al. (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change. Vol. 60. Iss. 3-4. P. 393–415. https://doi.org/10.1016/j.gloplacha.2007.05.002
  16. Earl S.R., Blinn D.W. (2003) Effects of wildfire ash on water chemistry and biota in South-Western U.S.A. streams. Freshwater Biol. Vol. 48. Iss. 6. P. 1015–1030. https://doi.org/10.1046/j.1365-2427.2003.01066.x
  17. Emelko M.B., Stone M., Silins U. et al. (2016) Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biol. Vol. 22. Iss. 3. P. 1168–1184. https://doi.org/10.1111/gcb.13073
  18. Emmerton C.A., Cooke C.A., Hustins S. et al. (2020) Severe western Canadian wildfire affects water quality even at large basin scales. Water Resourses. Vol. 183. 116071. https://doi.org/10.1016/j.watres.2020.116071
  19. Ermolaev O.P., Mal’tsev K.A., Mukharamova S.S. et al. (2017) Cartographic model of river basins of European Russia. Geografiya i prirodnye resursy. No. 2. P. 131–138 (in Russ). https://doi.org/10.1134/S1875372817020032
  20. Farr T.G., Rosen P.A., Caro E. et al. (2007) The shuttle radar topography mission. Rev. Geophys. Vol. 45. Iss. 2. RG2004. https://doi.org/10.1029/2005RG000183
  21. Ferro V., Porto P. (2000) Sediment delivery distributed (SEDD) Model. J. of Hydrol. Engineering. Vol. 5. Iss. 4. P. 411–422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
  22. Gao J. (1998) Impact of sampling intervals on the reliability of topographic variables mapped from grid DEMs at a microscale. Int. J. of Geogr. Information Sci. Vol. 12. Iss. 8. P. 875–890. https://doi.org/10.1080/136588198241545
  23. Gay A., Cerdan O., Mardhel V. et al. (2016) Application of an index of sediment connectivity in a lowland area. J. Soils Sediments. Vol. 16. No. 1. P. 280–293. https://doi.org/10.1007/s11368-015-1235-y
  24. Gerla P.J., Galloway J.M. (1998) Water quality of two streams near Yellowstone Park, Wyoming, following the 1988 Clover-Mist wildfire. Environ. Geol. Vol. 36. No. 1-2. P. 127–136. https://doi.org/10.1007/s002540050328
  25. Golosov V. (2006) Erozionno-akkumulyativnye protsessy v rechnykh basseinakh osvoennykh ravnin (Erosion and accumulation processes in river basins of developed plains). Moscow: GEOS (Publ.). 296 p. (in Russ).
  26. Golosov V., Yermolaev O., Litvin L. et al. (2018) Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degradation & Development. Vol. 29. Iss. 8. P. 2658–2667. https://doi.org/10.1002/ldr.3061
  27. Grigoriev A.A. (2011) Formirovanie drevostoev listvennitsy i berezy v vysokogor’yakh Pripolyarnogo Urala v usloviyakh sovremennogo izmeneniya klimata (Formation of larch and birch stands in the highlands of the Subpolar Urals under conditions of modern climate change). PhD thesis. Ekaterinburg: Ural’skii gosudarstvennyi lesotekhnicheskii universitet. 23 p. (in Russ).
  28. Grigoriev V. Yu., Frolova N.L., Kireeva M.B., Stepanenko V.M. (2022) Spatial and Temporal Variability of ERA5 Precipitation Accuracy over Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya geograficheskaya. Vol. 86. No. 3. P. 435–446 (in Russ). https://doi.org/10.31857/S2587556622030062
  29. Hansen M.C., Potapov P.V., Moore R. et al. (2013) High-resolution global maps of 21st-century forest cover change. Science. Vol. 342. No. 6160. P. 850–853. https://doi.org/10.1126/science.1244693
  30. Hansen M.C., Potapov P.V., Pickens A.H. et al. (2022) Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. Vol. 17. No. 3. P. 034050. https://doi.org/10.1088/1748-9326/ac46ec
  31. Hartmann J., Moosdorf N. (2012) The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem., Geophys., Geosyst. Vol. 13. Iss. 12. https://doi.org/10.1029/2012GC004370
  32. Heckmann T., Cavalli M., Cerdan O. et al. (2018) Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Sci. Rev. Vol. 187. P. 77–108. https://doi.org/10.1016/j.earscirev.2018.08.004
  33. Hengl T., Mendes de Jesus J., Heuvelink G.B.M. et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. Vol. 12. No. 2. e0169748. https://doi.org/10.1371/journal.pone.0169748
  34. Hersbach H., Bell B., Berrisford P. et al. (2020) The ERA5 global reanalysis. Quart. J. Royal Meteorol. Soc. Vol. 146. Iss. 730. P. 1999–2049. https://doi.org/10.1002/qj.3803
  35. Inbar M., Tamir M., Wittenberg L. (1998) Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology. Vol. 24. Iss. 1. P. 17–33. https://doi.org/10.1016/s0169-555x(97)00098-6
  36. Jumps N., Gray A.B., Guilinger J.J. (2022) Wildfire impacts on the persistent suspended sediment dynamics of the Ventura River, California. J. of Hydrol.: Region. Studies. Vol. 41. 101096. https://doi.org/10.1016/j.ejrh.2022.101096
  37. Krasnoshchekov Y.N. (2018) Soils of mountainous forests and their transformation under the impact of fires in Baikal region. Eurasian Soil Sci. Vol. 51. No. 4. P. 371–384. https://doi.org/10.7868/S0032180X18040019
  38. Lane P.N.J., Sheridan G.J., Noske P.J. et al. (2008) Phosphorus and nitrogen exports from SE Australian forests following wildfire. J. Hydrol. Vol. 361. No. 1-2. P. 186–198. https://doi.org/10.1016/j.jhydrol.2008.07.041
  39. Lappalainen H.K., Kerminen V., Petäjä T. et al. (2016) Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmos. Chem. Phys. Vol. 16. Iss. 22. P. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016
  40. Larionov G.A. (1993) Eroziya i deflyatsiya pochv (Erosion and soil deflation). Moscow: MGU (Publ.). 200 p. (in Russ).
  41. Litvin L.F., Kiryukhina Z.P., Krasnov S.F. et al. (2021) Dynamics of agricultural soil erosion in Siberia and Far East. Eurasian Soil Sci. No. 1. P. 136–148 (in Russ). https://doi.org/10.31857/S0032180X2101007X
  42. Magritsky D.V. (2022) New data on the distribution of water flow rates in the North-East of Russia and the influx of river waters into the Arctic seas. Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie. No. 6. P. 70–85 (in Russ). https://doi.org/10.35567/19994508_2022_6_5
  43. Magritsky D.V., Banshchikova L.S. (2021) Sediment yield response in the river basin. Lena on climate change and economic activity. In: Dinamika i vzaimodeistvie geosfer zemli. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 100-letiyu podgotovki v Tomskom gosudarstvennom universitete spetsialistov v oblasti nauk o Zemle. V 3 t. Tom II. Nauki o Zemle. P. 61–65 (in Russ).
  44. Magritsky D.V., Chalov S.R., Garmaev E. Zh. et al. (2023) New data on the transformation of water and sediment flow in the Lena River delta based on the results of expeditionary measurements in August 2022. Probl. Arkt. Antarkt. Vol. 69. No. 2. P. 171–190. https://doi.org/10.30758/0555-2648-2023-69-2-171-190
  45. Magritsky D.V., Frolova N.L., Pakhomova O.M. (2020) Potential Hydrological Restrictions on Water Use in the Basins of Rivers Flowing into Russian Arctic Seas. GES. Vol. 13. No. 2. P. 25–34. https://doi.org/10.24057/2071-9388-2019-59
  46. Maltsev K., Golosov V., Yermolaev O. et al. (2022) Assessment of Net Erosion and Suspended Sediments Yield within River Basins of the Agricultural Belt of Russia. Water. Vol. 14. Iss. 18. P. 2781. https://doi.org/10.3390/w14182781
  47. Maltsev K.A., Yermolaev O.P. (2019) Potential soil loss from erosion on arable lands in the European part of Russia. Eurasian Soil Sci. Vol. 52. No. 12. P. 1588–1597. https://doi.org/10.1134/S106422931912010X
  48. Melkonian A.K., Willis M.J., Pritchard M.E. et al. (2016) Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. Vol. 174. P. 244–257. https://doi.org/10.1016/j.rse.2015.11.001.
  49. Nasonova O.N., Gusev Y.M., Kovalev E. (2023) Climate Change Impact on Water Balance Components in Arctic River Basins. GES. Vol. 15. No. 4. P. 148–157. https://doi.org/10.24057/2071-9388-2021-144
  50. Nearing M.A. (1997) A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. Vol. 61. Iss. 3. P. 917–919. https://doi.org/10.2136/sssaj1997.03615995006100030029x
  51. Nummelin A., Ilicak M., Li C., Smedsrud L.H. (2016) Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res.: Oceans. Vol. 121. Iss. 1. P. 617–637. https://doi.org/10.1002/2015JC011156
  52. Panagos P., Borrelli P., Meusburger K. et al. (2015) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy. Vol. 48. P. 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
  53. Panagos P., Borrelli P., Meusburger K. et al. (2017) Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. Vol. 7. 4175. https://doi.org/10.1038/s41598-017-04282-8
  54. Park H., Sherstiukov A.B., Fedorov A.N. et al. (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ. Res. Lett. Vol. 9. No. 6. 064026. https://doi.org/10.1088/1748-9326/9/6/064026
  55. Pietroń J., Chalov S.R., Chalova A.S. et al. (2017) Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena. Vol. 152. P. 82–93. https://doi.org/10.1016/j.catena.2017.01.008
  56. Prepas E.E., Burke J.M., Chanasyk D.S. et al. (2003) Impact of wildfire on discharge and phosphorus export from the Sakwatamau watershed in the Swan Hills, Alberta, during the first two years. J. Environ. Eng. Sci. Vol. 2. No. S1. P. 63–72. https://doi.org/10.1139/s03-036
  57. Renard K.G., Foster G.R., Weesies G.A. et al. (1997) Predicting soil erosion by water: A guide to conservation planning with the resived Universal Soil Loss Equation (RUSLE). In: Agriculture Handbook. No. 537. 403 p.
  58. Reuter H.I., Neison A., Strobl P. et al. (2009) A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. In: IEEE Int. Geosci. and Remote Sensing Symp. Cape Town, South Africa: IEEE. P. 240–243. https://doi.org/10.1109/IGARSS.2009.5417688
  59. Rhoades C.C., Entwistle D., Butler D. (2011) The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int. J. Wildland Fire. Vol. 20. No. 3. P. 430–442. https://doi.org/10.1071/WF09086
  60. Ryzhov Yu.V. (2009) The erosion-accumulative processes within the basins of small rivers of southern East Siberia. Geografiya i prirodnye resursy. Vol. 30. No. 3. P. 265–271 (in Russ). https://doi.org/ 10.1016/j.gnr.2009.09.011
  61. Scott D.F., Versfeld D.B., Lesch W. (1998) Erosion and sediment yield in relation to afforestation and fire in the mountains of the western cape province, south Africa. South African Geogr. J. Vol. 80. Iss. 1. P. 52–59. https://doi.org/10.1080/03736245.1998.9713644
  62. Sheng M., Fang H. (2014) Research progress in WaTEM/SEDEM model and its application prospect. Progress in geography. Vol. 33. Iss. 1. P. 85–91. https://doi.org/10.11820/dlkxjz.2014.01.010
  63. Shynbergenov E.A., Ermolaev O.P. (2017) Potential soil erosion in the river basin. Lena. Vestnik Udmurtskogo universiteta. Seriya Biologiya. Nauki o Zemle. Vol. 27. No. 4. P. 513–528 (in Russ).
  64. Smith H.G., Sheridan G.J., Lane P.N. et al. (2011) Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. Vol. 396. Iss. 1-2. P. 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043
  65. Tadono T., Ishida H., Oda F. et al. (2014) Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry Remote Sensing and Spatial Inf. Sci. Vol. II-4. P. 71–76. https://doi.org/10.5194/isprsannals-II-4-71-2014
  66. Temnerud J., Bishop K. (2005) Spatial Variation of Streamwater Chemistry in Two Swedish Boreal Catchments: Implications for Environmental Assessment. Environ. Sci. Technol. Vol. 39. Iss. 6. P. 1463–1469. https://doi.org/10.1021/es040045q
  67. Tsyplenkov A.S., Chalov S.R., Shinkareva G.L. (2022) Water erosion of soils in the basins of the largest rivers in Siberia. Izvestiya Russkogo geograficheskogo obshchestva. Vol. 154. No. 5-6. P. 86–111 (in Russ).
  68. Van Rompaey A., Bazzoffi P., Jones R.J.A. et al. (2005) Modeling sediment yields in Italian catchments. Geomorphology. Vol. 65. Iss. 1-2. P. 157–169. https://doi.org/10.1016/j.geomorph.2004.08.006
  69. Van Rompaey A.J.J., Verstraeten G., Van Oost K. et al. (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf. Processes Landforms. Vol. 26. Iss. 11. P. 1221–1236. https://doi.org/10.1002/esp.275
  70. Verstraeten G., Prosser I.P., Fogarty P. (2007) Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. J. Hydrol. Vol. 334. Iss. 3-4. P. 440–454. https://doi.org/10.1016/j.jhydrol.2006.10.025
  71. Vieira D.C.S., Borrelli P., Jahanianfard D. et al. (2023) Wildfires in Europe: Burned soils require attention. Environ. Res. Vol. 217. 114936. https://doi.org/10.1016/j.envres.2022.114936
  72. Vihma T., Uotila P., Sandven S. et al. (2019) Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmos. Chem. Phys. Vol. 19. Iss. 3. P. 1941–1970. https://doi.org/10.5194/acp-19-1941-2019
  73. Wessel B., Huber M., Wohlfart C. et al. (2018) Accuracy assessment of the global TanDEM–X Digital Elevation Model with GPS data. ISPRS J. of Photogrammetry and Remote Sensing. Vol. 139. P. 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
  74. Wischmeier W.H., Smith D.D. (1978) Predicting rainfall erosion losses: A guide to conservation planning. U.S. Department of Agricultural HandBook. No. 537. 67 p.
  75. Yamazaki D., Ikeshima D., Tawatari R. et al. (2017) A high-accuracy map of global terrain elevations: Accurate Global Terrain Elevation map. Geophys. Res. Lett. Vol. 44. Iss. 11. P. 5844–5853. https://doi.org/10.1002/2017GL072874
  76. Zhang X, Drake NA, Wainwright J, Mulligan M. (1999) Comparison of slope estimates from low resolution DEMs: scaling issues and a fractal method for their solution. Earth Surf. Processes Landforms. Vol. 24. Iss. 9. P. 763–779. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<763:: AID-ESP9>3.0.CO;2-J
  77. Zhao G., Gao P., Tian P. et al. (2020) Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena. Vol. 185. 104284. https://doi.org/10.1016/j.catena.2019.104284
  78. Zhidkin A.P., Smirnova M.A., Lozbenev N.I. et al. (2021) Digital mapping of soil associations and eroded soils (Prokhorovskii district, Belgorod oblast). Eurasian Soil Sci. Vol. 54. No. 1. P. 13–24. https://doi.org/10.1134/S1064229321010154

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of the studied catchment. 1 – bound of the catchment; 2 – water bodies; 3 – main rivers; 4 – settlements; 5 – bound of the Lena basin; in the insets (6–7): 6 – hydrological station, 7 – weather station.

Baixar (1MB)
3. Fig. 2. Examples of areas covered by forest fires over different years in the Yakutsk area according to the Global Forest Change model (on the left – in red), and their image on composites of Landsat images (on the right): (a) – 2000–2001, (б) – 2009, (в) – 2011–2012, (г) – 2019.

Baixar (1MB)
4. Fig. 3. Map of rates of rainfall soil erosion and accumulation in the “Yakutsk” area. (a) – “historical” period (2003–2007); (б) – modern period (2015–2019). 1 – rivers; 2 – settlements; 3 – water bodies; 4 – catchment boundary; 5 – rates of rain washout and soil accumulation, t×ha per year.

Baixar (2MB)
5. Fig. 4. Map of soil erosion and accumulation in the Bolshaya Cherepanikha catchment. (a) – rainfall erosion in “historical” period (1985–1989); (б) – rainfall erosion in modern period (2015–2019); (в) – snowmelt erosion in “historical” period (1985–1989); (г) – snowmelt erosion in modern period (2015–2019). 1 – rivers; 2 – settlements; 3 – water bodies; 4 – catchment boundary; 5 – rates of soil flushing and accumulation, t/ha per year.

Baixar (3MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025