The loess-soil sequence of the Central Ciscaucasia: chronostratigraphy, composition, and sedimentation conditions during the late neopleistocene

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study presents the results of sedimentological investigation of the core recovered from from the Pervomayskaya-1 (Pm-1) borehole, which revealed the most complete structure of the upland loess-soil series (LSS) in the central Pre-Caucasus. The borehole reached a depth of 13.8 m. Luminescence dating for two samples from the core yielded ages of 62±3 and 102±7 thousand years, attributing the entire studied sequence to the Upper Neopleistocene. Lithostratigraphic units were identified based on macroscopic core examination and geochemical analyses. The Mezin pedocomplex (13.8–9.1 m, MIS 5) consisting of three paleosols was identified at the base of the section. Above it lies a horizon of Valdai loess (9.1–1.2 m, MIS 4–2) of substantial thickness with weak signs of interstadial pedogenesis in its middle part. The section is capped by a Holocene chernozem (1.2–0.0 m, MIS 1) showing signs of anthropogenic transformation in its upper profile. The LSS structure revealed in the Pm-1 core shows stratigraphic unity with previously dated reference sections and boreholes of the Pre-Caucasus LSS: Beglitsa (Bg), Vorontsovka-4 (V-4), Sladkaya Balka-1 (Sb-1), and Otkaznoye-20 (Ot-20). Moreover, the Pm-1 column fits within the main trend of increasing loess thickness and grain size from west to east across the Pre-Caucasus. For the Pm-1 and Ot-20 columns, consistent variations in magnetic susceptibility and grain size were identified. Using these consistent variations as chronostratigraphic markers allowed for a more detailed depth-age model for Pm-1. Based on this model, estimates of loess accumulation rates for the Late Neopleistocene and Holocene were calculated: maximum rates (15.9–17.5 cm/thousand years) correspond to the interval of 36–16 thousand years ago; elevated rates (11.4–12.5 cm/thousand years) align with the interval of 80–40 thousand years ago; low rates (9.1–10.4 cm/thousand years) were recorded in the interval of 128–81 thousand years ago; minimal rates (6.0–6.6 cm/thousand years) correspond to the interval of 13–5 thousand years ago. The intensity of loess accumulation in Pm-1 shows consistency with the most complete LSSs of Eastern Europe, as well as with the mineral dust concentration in Greenland ice core NGRIP.

Full Text

Restricted Access

About the authors

N. V. Sychev

Institute of Geography RAS

Author for correspondence.
Email: nvsychev25@igras.ru
Russian Federation, Moscow

E. A. Konstantinov

Institute of Geography RAS

Email: nvsychev25@igras.ru
Russian Federation, Moscow

A. L. Zakharov

Institute of Geography RAS

Email: nvsychev25@igras.ru
Russian Federation, Moscow

References

  1. Antoine P., Rousseau D.D., Moine O. et al. (2009) Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quat. Sci. Rev. Vol. 28. Iss. 25–26. P. 2955–2973. https://doi.org/10.1016/j.quascirev.2009.08.001
  2. Balaev L.G., Tsarev P.V. (1964) Lessovye porody Tsentralʹnogo i Vostochnogo Predkavkazya (Loess rocks of the Central and Eastern Ciscaucasia.) Moscow: Nauka (Publ.). 246 p. (in Russ).
  3. Banerjee S.K., Hunt C.P., Liu X.M. (1993) Separation of local signals from the regional paleomonsoon record of the Chinese Loess Plateau: A rock‐magnetic approach. Geophys. Res. Lett. Vol. 20. Iss. 9. P. 843–846. https://doi.org/10.1029/93GL00908
  4. Blaauw M., Christen J.A. (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. No. 3. P. 457–474. https://doi.org/10.1214/11-BA618
  5. Blott S.J., Pye K. (2012) Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology. Vol. 59. Iss. 7. P. 2071–2096. https://doi.org/10.1111/j.1365-3091.2012.01335.x
  6. Bolikhovskaya N.S. (1995) Evolyutsiya lessovo-pochvennoi formatsii Severnoi Evrazii (Evolution of the loess-soil formation of Northern Eurasia) Moscow: MGU (Publ.). 270 p. (in Russ).
  7. Bosq M., Kreutzer S., Bertran P. et al. (2023) Last Glacial loess in Europe: luminescence database and chronology of deposition. Earth Syst. Sci. Data. Vol. 15. Iss. 10. P. 4689–4711. https://doi.org/10.5194/essd-15-4689-2023
  8. Chen J., Stevens T., Yang T.B. et al. (2022) Revisiting Late Pleistocene Loess Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Front. Earth Sci. Vol. 9. 808157. https://doi.org/10.3389/feart.2021.808157
  9. Cosentino N.J., Torre G., Lambert F. et al. (2024) Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types. Earth Syst. Sci. Data. Vol. 16. Iss. 2. P. 941–959. https://doi.org/10.5194/essd-16-941-2024
  10. Fainer Yu.B., Lizogubova R.N. (1987) Dissection of loess formation deposits of the steppe Stavropol region and its correlation with formations of the periglacial zone of Eurasia. In: Inzhenerno-geologicheskie osobennosti tsiklichnosti lessov. Moscow: Nauka (Publ.). P. 103–109. (in Russ).
  11. Fenn K., Prud’Homme C. (2022) Dust deposits: loess. Treatise on Geomorphology. Vol. 7. P. 320–365. https://doi.org/10.3389/feart.2021.808157
  12. Fick S.E., Hijmans R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. of Climatology. Vol. 37. Iss. 12. P. 4237–4492. https://doi.org/10.1002/joc.5086
  13. Frechen M., Oches E.A., Kohfeld K.E. (2003) Loess in Europe-mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. Vol. 22. Iss. 18-19. P. 1835–1857. https://doi.org/10.1016/S0277-3791(03)00183-5
  14. Galai B.F. (1992) Litogenez i prosadochnost’ eolovykh lessov (na primere Tsentral’nogo Predkavkaz’ya) [Lithogenesis and subsidence of aeolian loess (on the example of Central Ciscaucasia)]. D. Sc. thesis. Moscow: MGU 38 p. (in Russ).
  15. Galai B.F., Serbin V.V., Plakhtyukova V.S., Galai O.B. (2016) Genetic analysis of cover loams in Stavropol. Nauka. Innovatsii. Tekhnologii. No. 1. P. 93–106. (in Russ).
  16. Heller F., Liu T. (1984) Magnetism of Chinese loess deposits. Geophys. J. Int. Vol. 77. Iss. 1. P. 125–141. https://doi.org/10.1111/j.1365-246X.1984.tb01928.x
  17. Konstantinov E.A., Mazneva E.A., Sychev N.V. et al. (2022а) Variability in the structure and composition of the Upper Quaternary loess of Ciscaucasia (south of the European part of Russia). Geomorfologiya. Vol. 53. No. 3. P. 107–116. https://doi.org/10.31857/S0435428122030075
  18. Konstantinov E.A., Zakharov A.L., Sychev N.V. et al. (2022б) Loess Accumulation in the Southern Part of European Russia at the End of the Quaternary Period. Herald Russ. Acad. Sci. Vol. 92. P. 342–351. https://doi.org/10.1134/S1019331622030108
  19. Konstantinov E.A., Zakharov A.L., Selezneva E.V., Filippova K.G. (2023) Morphometric analysis of the large enclosed depression of the Southern East European plain. Geomorfologiya i Paleogeografiya. Vol. 54. No. 1. P. 99–111 (in Russ). https://doi.org/10.31857/S2949178923010073
  20. Kukla G., An Z. (1987) Loess stratigraphy in central China. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 72. P. 203–225. https://doi.org/10.1016/0031-0182(89)90143-0
  21. Laag C., Lagroix F., Kreutzer S. et al. (2023) Measuring and evaluating colorimetric properties of samples from loess-paleosol sequences. MethodsX. Vol. 10. 102159. https://doi.org/10.1016/j.mex.2023.102159
  22. Liang Y., Yang T.B., Velichko A.A. et al. (2016) Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since marine isotope stage 11. J. of Mountain Sci. Vol. 13. P. 985–999. https://doi.org/10.1007/s11629-015-3738-9
  23. Lisiecki L.E., Raymo M.E. (2005) A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. Vol. 20. Iss. 1. P. 1–17. https://doi.org/10.1029/2004PA001071
  24. Maher B.A. (1998) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 137. Iss. 1–2. P. 25–54. https://doi.org/10.1016/S0031-0182(97)00103-X
  25. Maher B.A., Prospero J.M., Mackie D. et al. (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. Vol. 99. Iss. 1-2. P. 61–97. https://doi.org/10.1016/j.earscirev.2009.12.001
  26. Maher B., Thompson R., Liu X. et al. (1994) Pedogenesis and paleoclimate: interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comment. Geology. Vol. 22. No. 9. P. 857–857. https://doi.org/10.1130/0091-7613(1994)022<0857: PAPIOT>2.3.CO;2
  27. Makeev A., Lebedeva M., Kaganova A. et al. (2021) Pedosedimentary Environments in the Caspian Lowland during MIS5 (Srednaya Akhtuba Reference Section, Russia). Quat. Int. Vol. 590. P. 164–180. https://doi.org/10.1016/j.quaint.2021.03.015
  28. Marković S.B., Stevens T., Mason J. et al. (2018) Loess correlations between myth and reality. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 509. P. 4–23. https://doi.org/10.1016/j.earscirev.2009.12.001
  29. Mazneva E., Konstantinov E., Zakharov A. et al. (2021) Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition. Quat. Int. Vol. 590. P. 146–163. https://doi.org/10.1016/j.quaint.2020.11.039
  30. Panin P., Kalinin P., Filippova K. et al. (2023) Paleo-pedological record in loess deposits in the south of the East European plain, based on Beglitsa-2017 section study. Geoderma. Vol. 437. 116567. https://doi.org/10.1016/j.geoderma.2023.116567
  31. Panin P.G., Timireva S.N., Morozova T.D. et al. (2018) Morphology and micromorphology of the loess-paleosol sequences in the south of the East European plain (MIS 1 – MIS 17). Catena. Vol. 168. P. 79–101. https://doi.org/10.1016/j.catena.2018.01.032
  32. Perić Z.M., Stevens T., Obreht I. et al. (2022) Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin. Global and Planetary Change. Vol. 215. 103895. https://doi.org/10.1016/j.gloplacha.2022.103895
  33. Pye K. (1995) The nature, origin and accumulation of loess. Quat. Sci. Rev. Vol. 14. Iss. 7-8. P. 653–667. https://doi.org/10.1016/0277-3791(95)00047-X
  34. Ryskov Ya.G., Oleinik S.A., Ryskova E.A., Morgun E.G. (2007) Isotopic composition of sulfur in loess sulfates in Ciscaucasia and adjacent territories as an indicator of the origin of salts. Pochvovedeniye. No. 4. P. 418–427. (in Russ).
  35. Semikolennykh D.V., Kurbanov R.N., Yanina T.A. (2023) Ingression of the Karangatian Sea into the Manych depression (late Pleistocene). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 6. P. 96–106 (in Russ). https://doi.org/10.55959/MSU0579-9414.5.78.6.9
  36. Simonsen M.F., Baccolo G., Blunier T. et al. (2019) East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nat. Commun. Vol. 10. 4494. https://doi.org/10.1038/s41467-019-12546-2
  37. Sprafke T., Schulte P., Meyer-Heintze S. et al. (2020) Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quat. Sci. Rev. Vol. 248. 106602. https://doi.org/10.1016/j.quascirev.2020.106602
  38. Sychev N.V. (2023) Paleogeograficheskie obstanovki formirovaniya verkhnechetvertichnykh lessovo-pochvennykh serii Predkavkaz’ya. (Paleogeographical settings for the formation of the Upper Quaternary loess-soil series of Ciscaucasia). Phd thesis. Moscow: IG RAN (Publ.). 27 p. (in Russ).
  39. Sychev N.V., Konstantinov E.A., Zakharov A.L., et al. (2022) New data on geochronology of the Upper Quaternary loess-soil series in the Terek–Kuma Lowland. Lithology and mineral resources. No. 4. P. 336–347. https://doi.org/10.1134/S0024490222040071
  40. Thiel C., Buylaert J.P., Murray A. et al. (2011) Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol. Quat. Int. Vol. 234. Iss. 1–2. P. 23–31. https://doi.org/10.1016/j.quaint.2010.05.018
  41. Trofimov V.T. (Ed.) (2008) Opornye inzhenerno-geologicheskie razrezy lessovykh porod Severnoi Evrazii. (Reference engineering-geological sections of loess rocks of Northern Eurasia). Moscow: KDU (Publ.). 315 p. (in Russ).
  42. Udartsev V.P., Bolikhovskaya N.S., Virina E.I. (1989) Reference sections, chronostratigraphy and paleogeography of loess strata of the Cis-Caucasian loess region. In: Inzhenernaya geologiya lessovykh porod: tezisy dokladov vsesoyuznogo soveshchaniya. Rostov-na-Donu, 1989 g. Vol. 2. Moscow: AN SSSR (Publ.). P. 102–103. (in Russ).
  43. Urusevskaya I.S. (Ed). (2009) Karta pochvenno-ekologicheskogo raionirovaniya Rossiiskoi Federatsii masshtaba 1:8 000 000. Tsifrovaya versiya – https://soil-db.ru/map?name=eco. (Map of soil-ecological zoning of the Russian Federation at a scale of 1:8 000 000. Digital version – https://soil-db.ru/map?name=eco).
  44. Velichko A.A., Borisova O.K., Zakharov A.L. et al. (2017) Landscape Changes in the Southern Russian Plain in the Late Pleistocene: A Case Study of the Loess-Soil Sequence in the Azov Sea Region. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 1. P. 74–83 (in Russ). https://doi.org/10.15356/0373-2444-2017-1-74-83
  45. Velichko A.A., Morozova T.D. (2010) Basic features of Late Pleistocene soil formation in the East European Plain and their paleogeographic interpretation. Eurasian Soil Sci. Vol. 43. P. 1535–1546. https://doi.org/10.1134/S1064229310130120
  46. Velichko A.A., Morozova T.D., Borisova O.K. et al. (2012) Development of the steppe zone in Southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region. Dokl. Earth Sci. Vol. 445. No. 2. P. 999–1002. https://doi.org/10.1134/S1028334X12080107
  47. Virina E.I., Faustov S.S., Heller F. (2000) Magnetism of loess-palaeosol formations in relation to soil-forming and sedimentary processes. Phys. Chem. Earth. Part A: Solid Earth and Geodesy. Vol. 25. Iss. 5. P. 475–478. https://doi.org/10.1016/S1464-1895(00)00073-9
  48. Yanina T.A., Svitoch A.A., Kurbanov R.N. et al. (2017) Aleogeographic analysis of the results of optically stimulated luminescence dating of Pleistocene deposits of the Lower Volga Area. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 1. P. 20–28. (in Russ).
  49. Zakharov A.L., Konstantinov E.A. (2019) Structure of Large Flat-Bottom Depressions on Loess Interfluves of Eastern Azov Region (on the Example of “Chervonaya Pad”). Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 4. P. 85–96 (in Russ). https://doi.org/10.31857/S2587-55662019485-96

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the research objects: (a) – Location of the reference boreholes of the Central and Eastern Ciscaucasia: Pervomayskaya-1 (Pm-1), Otkaznoye-20 (Ot-20), Sladkaya Balka-1 (Sb-1); (б) – Topography of the Ciscaucasia and the northern macroslope of the Stavropol Upland (topographic basis – digital elevation model SRTM); (в) – Terrain in the area of the Pm-1 borehole (Google Earth satellite image, 2022).

Download (1MB)
3. Fig. 2. Structure and analytical characteristics of the loess-paleosoil series in the Pervomaiskaya core 1 (Pm-1): χlf – low-frequency magnetic susceptibility; FD – frequency-dependent magnetic susceptibility; ГС – granulometric composition; ППП – loss on ignition; L* – color brightness (lightness) negative values show black, positive – white; a* – red vs. green, where negative values indicate green and positive values indicate red; b* – yellow vs. blue, where negative values indicate blue and positive values indicate yellow; Stratigraphic horizons according to (Velichko, Morozova, 2010): Hol – Holocene soil, Br – Bryansk paleosol, MzKr – Mezin pedocomplex, Krutitsa paleosol, MzSl – Mezin pedocomplex, Salyn paleosol. Grain size, µm: 1 – <2, 2 – 2–4, 3 – 4–8, 4 – 8–16, 5 – 16–31, 6 – 31–63, 7 – 63–125, 8 – 125–250, 9 – 250–500; coloring and symbols on the lithologic column: 10 – horizons of “pure” loess, 11 – anthropogenically processed ground, 12 – mature soil with a full profile, 13 – ephemeral developed soil, 14 – carbonate concretions, 15 – gypsum concretions, 16 – luminescent dates in ka.

Download (1MB)
4. Fig. 3. Correlation scheme of the columns Sladkaya Balka-1 (Sb-1) (Mazneva et al., 2021; Konstantinov et al., 2022, with modifications), Pervomayskaya-1 (Pm-1) (authors’ data) and Otkaznoye-20 (Ot-20) (Sychev et al., 2022; Konstantinov et al., 2022). МРЧ – median grain size (MGS); χlf – low-frequency magnetic susceptibility; Hol – Holocene soil, Br – Bryansk paleosol, MzKr – Krutitsa paleosol, MzSl – Salyn paleosol. 1 – technozem; 2 – loess horizons; 3 – developed soils with a full profile; 4 – levels of ephemeral soil formation; 5 – luminescent dates in ka; 6 – correlation markers (corresponds to the ordinal number in tab. 1).

Download (951KB)
5. Fig. 4. Bayesian depth-age model of the Pm-1 core. 1 – simulated dates obtained by matching variations in grain size distribution and magnetic susceptibility between the Pm-1 and Ot-20 cores; 2 – simulated dates obtained by correlating stratigraphic unit boundaries between the Pm-1 and Ot-20 cores; 3 – direct luminescence dates; 4 – simulated dates obtained by correlating stratigraphic unit boundaries and marine isotope stages using the LR-04 model; 5 – direct luminescence dates corrected for 100% water saturation. The red dotted line is the mean value of the model age, the gray dotted line is the boundaries of the 95% confidence interval.

Download (197KB)
6. Fig. 5. Changes in the main sedimentological characteristics of the Pervomayskaya-1 (this study) and Otkaznoye-20 (Sychev et al., 2022) cores at the end of the Quaternary. МРЧ – median grain size (MGS); П – sand content; ТО – average sedimentation rate; Г – clay content; FD – frequency dependence of magnetic susceptibility.

Download (493KB)

Copyright (c) 2025 Russian Academy of Sciences