UNCONVENTIONAL APPROACH FOR THE SYNTHESIS OF NICKEL AND PLATINUM COMPLEXES OF 1,3,6-AZADIPHOSPHACYCLOHEPTANES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The approach to the synthesis of bis-phospninesulfides and nickel and platinum chelate complexes of 1,3,6-azadiphosphacycloheptanes is supposed. The approach is based on the ability of 14-membered 1,8-diaza-3,6,10,13-tetraphosphacyclotetradecanes undergo the reversible transformation to the mixture of meso- and rac-isomers of 7-membered bisphosphines during the solution. The reaction of 1,8-diaza-3,6,10,13-tetra-phosphacyclotetradecanes with elementary sulfur results in 14-membered tetra(phosphinesulfides) or 7‑membered bis(phosphinesulfides) that depends on the reaction conditions. The reaction of 1,3,6-azadiphosphacycloheptanes, forming by the reversible dissociation of 14-membered tetraphosphines in chloroform, with Ni(CH3CN)6(BF4)2 and Pt(COD)Cl2 give corresponding chelate complexes. The structures of meso-isomer of 1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptan-3,6-disulfide 8, bis-(κ2-1-isopropyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)nickel bis(tetrafluoroborate) 9, bis-(κ2-1-icyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)chloronickel tetrafluoroborate 10 and cis-dichloro-(κ2-1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)-platinum(II) 13 were established by single crystal XRD analysis.

Sobre autores

E. Musina

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: elli@iopc.ru
Russian Federation, 420088, Kazan

I. Strelnik

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: elli@iopc.ru
Russian Federation, 420088, Kazan

I. Litvinov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: elli@iopc.ru
Russian Federation, 420088, Kazan

A. Karasik

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: elli@iopc.ru
Russian Federation, 420088, Kazan

Bibliografia

  1. Homogeneous Catalysis with Metal Phosphine Complexes. Pignolet L.H. (Ed.). NY.: Springer New York, 1983. p. 489. https://doi.org/10.1007/978-1-4613-3623-5
  2. Gillespie J.A., Doddsa D.L., Kamer P.C.J. // Dalton Trans. 2010. V. 39. P. 2751–2764. https://doi.org/10.1039/B913778E
  3. Van Leeuwen P.W.N.M., Kamer P.C.J., Reek J.N.H., Dierkes P. // Chem. Rev. 2000. V. 100. № 8. P. 2741–2770. https://doi.org/10.1021/cr9902704
  4. Karasik A.A., Balueva A.S., Musina E.I., Sinyashin O.G. // Mendeleev Commun. 2013. V. 23. № 8. P. 237–248. https://doi.org/10.1016/j.mencom.2013.09.001
  5. Karasik A.A., Balueva A.S., Musina E.I., Strelnik I.D., Sinyashin O.G. // Pure Appl. Chem. 2017. V. 89. № 3. P. 293–309. https://doi.org/10.1515/pac-2016-1022
  6. Wiese S., Kilgore U.J., Ho M.-H., Raugei S., DuBois D.L., Bullock R.M., Helm M.L. // ACS Catalysis. 2013. V. 3. № 11. P. 2527–2535. https://doi.org/10.1021/cs400638f
  7. Wilson A.D., Newell R.H., McNevin M.J., Mucker-man J.T., Rakowski DuBois M., DuBois D.L. // J. Am. Chem. Soc. 2006. V. 128. № 1. P. 358–366. https://doi.org/10.1021/ja056442y
  8. DuBois D.L. // Inorg. Chem. 2014. V. 53. № 8. P. 3935–3960. https://doi.org/10.1021/ic4026969
  9. Stewart M.P., Ho M.-H., Wiese S., Lindstrom M.L., Thogerson C.E., Raugei S., Bullock R.M., Helm M.L. // J. Am. Chem. Soc. 2013. V. 135. № 16. P. 6033–6046. https://doi.org/10.1021/ja400181a
  10. Reback M.L., Ginovska B., Buchko G.W., Dutta A., Priyadarshani N., Kier B.L., Helm M.L., Raugei S., Shaw W.J. // J. Coord. Chem. 2016. V. 69. № 11–13. P. 1730–1747. https://doi.org/10.1080/00958972.2016.1188924
  11. Brown H.J.S., Wiese S., Roberts J.A.S., Bullock R.M., Helm M.L. // ACS Catal. 2015. V. 5. № 4. P. 2116–2123. https://doi.org/10.1021/cs502132y
  12. Helm M.L., Stewart M.P., Bullock R.M., Rakowski DuBois M., DuBois D.L. // Science. 2011. V. 333. № 6044. P. 863–866. https://doi.org/10.1126/science.1205864
  13. Musina E.I., Karasik A.A., Balueva A.S., Strelnik I.D., Fesenko T.I., Dobrynin A.B., Gerasimova T.P., Katsyuba S.A., Kataeva O.N., Lönnecke P., Hey-Hawkins E., Sinyashin O.G. // Eur. J. Inorg. Chem. 2012. P. 1857–1866. https://doi.org/10.1002/ejic.201101337
  14. Фесенко Т.И., Стрельник И.Д., Мусина Э.И., Карасик А.А., Синяшин О.Г. // Изв. АН. Сер. Хим. 2012. № 9. С. 1776–1781.
  15. Karasik A.A., Balueva A.S., Moussina E.I., Naumov R.N., Dobrynin A.B., Krivolapov D.B., Litvinov I.A., Sinya-shin O.G. // Heteroat. Chem. 2008. V. 19. № 2. P. 125–132. https://doi.org/10.1002/hc.20397
  16. Kreienbrink A., Löennecke P., Findeisen M., Hey-Hawkins E. // Chem. Commun. 2012. V. 48. № 75. P. 9385–9387. https://doi.org/10.1039/C2CC34860H
  17. Musina E.I., Fesenko T.I., Strelnik I.D., Polyancev F.M., Latypov Sh.K., Lönnecke P., Hey-Hawkins E., Kara-sik A.A., Sinyashin O.G. // Dalton Trans. 2015. V. 44. № 30. P. 13565–13572. https://doi.org/10.1039/C5DT01910A
  18. Wittmann T.I., Musina E.I., Krivolapov D.B., Litvinov I.A., Kondrashova S.A., Latypov Sh.K., Karasik A.A., Si-nyashin O.G. // Dalton Trans. 2017. V. 46. P. 12417–12420. https://doi.org/10.1039/C7DT03010J
  19. Musina E., Wittmann T., Latypov Sh., Kondrashova S., Lönnecke P., Litvinov I., Hey-Hawkins E., Karasik A. // Eur. J. Inorg. Chem. 2019. V. 2019. № 26. P. 3053–3060. https://doi.org/10.1002/ejic.201900386
  20. Addison A.W., Rao T.N., Reedijk J., Van Rijn J., Verschoor G.C. // J. Chem. Soc., Dalton Trans. 1984. № 7. P. 1349–1456. https://doi.org/10.1039/DT9840001349
  21. Musina E.I., Wittmann T.I., Strelnik I.D., Naumova O.E., Karasik A.A., Krivolapov D.B., Islamov D.R., Kataeva O.N., Sinyashin O.G., Lönnecke P., Hey-Hawkins E. // Polyhedron. 2015. V. 100. P. 344–350. https://doi.org/10.1016/j.poly.2015.08.033
  22. Steinbock R., Steuber F., Blümich B., Schleker P.P.M. // Inorg. Chem. Commun. 2018. V. 95. P. 47–49. https://doi.org/10.1016/j.inoche.2018.07.007
  23. Drew D., Doyle J.R. // Inorg. Synth. 1990. V. 28. P. 346–349. https://doi.org/10.1002/9780470132593.ch89
  24. Van Leewen P.W.N.M., Groeneveld W.L. // Inorg. Nucl. Chem. Lett. 1967. V. 3. № 4. P.145–146. https://doi.org/10.1016/0020-1650(67)80150-8
  25. Sheldrick G.M. // SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius, 2004.
  26. APEX2 (Version 2.1), SAINTPlus, Data Reduction and Correction Program (Version 7.31A), BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
  27. Sheldrick G.M. // Acta Crystallogr. Sect. A. 2015. V. 71. P. 3–8. https://doi.org/10.1107/S2053273314026370
  28. Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. V. 71. P. 3–8. https://doi.org/10.1107/S2053229614024218
  29. Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J. // J. Appl. Cryst. 2006. V. 39. P. 453–459. https://doi.org/10.1107/S002188980600731X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (74KB)
3.

Baixar (141KB)
4.

Baixar (101KB)
5.

Baixar (359KB)
6.

Baixar (59KB)
7.

Baixar (54KB)
8.

Baixar (170KB)

Declaração de direitos autorais © Э.И. Мусина, И.Д. Стрельник, И.А. Литвинов, А.А. Карасик, 2023