Oxygen exchange and mechanism of oxygen intake by complex oxides with a swedenborgite structure
- Authors: Turkin D.I.1, Reznitskikh O.G.1, Kozhevnikov V.L.1
-
Affiliations:
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 520, No 1 (2025)
- Pages: 23-32
- Section: CHEMISTRY
- URL: https://cijournal.ru/2686-9535/article/view/683264
- DOI: https://doi.org/10.31857/S2686953525010036
- EDN: https://elibrary.ru/AWJMSS
- ID: 683264
Cite item
Abstract
The kinetics of oxygen sorption from air by Y0.8Ca0.2BaCo4-xFexO7+δ (x = 0, 1) is studied by nonisothermal thermogravimetric measurements. The activation energy is calculated by model-free methods of Friedman, Starink and Vyazovkin. The master plot and Coates–Redfern methods are applied to determine the mechanism of oxygen intake. The results show the activation energies and frequency factors are 189 and 197 kJ mol–1 and 4.7 × 1013 and 2.3 × 1014 min–1 in Y0.8Ca0.2BaCo4O7+δ and Y0.8Ca0.2BaCo3FeO7+δ, respectively. The arguments are given in proof of oxygen sorption determined by the volume random nucleation and growth of the oxygen-rich nuclei.
Keywords
Full Text

About the authors
D. I. Turkin
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: turkin@ihim.uran.ru
Russian Federation, 620077 Ekaterinburg
O. G. Reznitskikh
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: turkin@ihim.uran.ru
Russian Federation, 620077 Ekaterinburg
V. L. Kozhevnikov
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: turkin@ihim.uran.ru
Academician of the RAS
Russian Federation, 620077 EkaterinburgReferences
- Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. // J. Mater. Chem. A. 2016. V. 4. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
- Tescari S., Agrafiotis C., Breuer S., de Oliveira L., Neisesvon Puttkamer M., Roeb M., Sattler C. // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
- Kodama T., Gokon N. // Chem. Rev. 2007. V. 107. P. 4048–4077. https://doi.org/10.1021/cr050188a
- Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. // Chem. Mater. 2006. V. 18. P. 490–494. https://doi.org/10.1021/cm0523081
- Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. // Solid State Ion. 2006. V. 177. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
- Chen T., Hasegawa T., Asakura Y., Kakihana M, Motohashi T., Yin S. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
- Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. // Catal. Today. 2002. V. 74. P. 225–234. https://doi.org/10.1016/S0920-5861(02)00025-1
- Kaspar J., Fornasiero P. // J. Solid State Chem. 2003. V. 171. P. 19–29. https://doi.org/10.1016/S0022-4596(02)00141-X
- Rasanen S., Yamauchi H., Karppinen M. // Chem. Lett. 2008. V. 37. P. 638–639. https://doi.org/10.1246/cl.2008.638
- Parkkima O., Yamauchi H., Karppinen M. // Chem. Mater. 2013. V. 25. P. 599–604. https://doi.org/10.1021/cm3038729
- Parkkima O., Karppinen M. // Eur. J. Inorg. Chem. 2014. V. 2014. № 25. P. 4056–4067. https://doi.org/10.1002/ejic.201402135
- Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. // Mater. Sci. Eng. B. 2008. V. 148. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
- Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
- Turkin D.I., Tolstov K.S., Yurchenko M.V., Suntsov A.Yu., Kozhevnikov V.L. // Inorg. Mater. 2023. V. 59. P. 1104–1110. https://doi.org/10.1134/S0020168523100126
- Rodríguez-Carvajal J. // Physica B. 1993. V. 192. P. 55–59. https://doi.org/10.1016/0921-4526(93)90108-I
- Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. V. 520. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034
- Alekseev A.V., Kameneva M.Y., Kozeeva L.P., Lavrov A.N., Podberezskaya N.V., Smolentsev A.I., Shmakov A.N. // Bull. Russ. Acad. Sci.: Phys. 2013. Т. 77. № 2. С. 151–154. https://doi.org/10.3103/S1062873813020044
- Cuartero V., Blasco J., Subías G., García J., Rodríguez-Velamazán J.A., Ritter C. // Inorg. Chem. 2018. V. 57. P. 3360–3370. https://doi.org/10.1021/acs.inorgchem.8b00112
- Brown M.E., Dollimore D., Galwey A.K. Reactions in the Solid State. Amsterdam: Elsevier, 1980. 339 c.
- Senum G., Yang R. // J. Thermal Anal. 1977. V. 11. P. 445–447. https://doi.org/10.1007/BF01903696
- Pérez-Maqueda L.A., Criado J.M. // J. Therm. Anal. Calorim. 2020. V. 60. P. 909–915. https://doi.org/10.1023/A:1010115926340
- Friedman H.L. // J. Polym. Sci., Part C: Polym. Lett. 1964. V. 6. P.183–195. https://doi.org/10.1002/polc.5070060121
- Starink M.J. // Thermochim. Acta. 2003. V. 404. P. 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
- Vyazovkin S., Dollimore D. // J. Chem. Inf. Comp. Sci. 1996. V. 36. P. 42–45. https://doi.org/10.1021/ci950062m
- Hou L., Yu Q., Wang T., Wang K., Qin Q., Qi Z. // Korean J. Chem. Eng. 2018. V. 35. P. 626–636. https://doi.org/10.1007/s11814-017-0332-6
- Vyazovkin S. // Molecules. 2021. V. 26. P. 3077. https://doi.org/10.3390/molecules26113077
- Coats A.W., Redfern J.P. // Nature. 1964. V. 201. P. 68–69. https://doi.org/10.1038/201068a0
- Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A. 2000. V. 104. P. 10777–10782. https://doi.org/10.1021/jp0022205
- De Bruijn T.J.W., De Jong W.A., Van Den Berg P.J. // Thermochim. Acta. 1981. V. 45. P. 315–325. https://doi.org/10.1016/0040-6031(81)85091-5
Supplementary files
